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I
THE POSITION OF THE HYDROGEN ATOMS

AND THE ZERO-POINT ENTROPY OF ICE

1. Historical introduction.

In the middle of the thirties, a certain finality appeared to have 
been reached with regard to the opinion on the structure of 

ice. Barnes1) had shown that the oxygen nuclei lay in puckered 
hexagonal layers, in which oxygen atoms were raised and lowered 
alternately (see fig. 1). Adjacent layers were mirror-images and
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Fig. 1. Projection of a layer of oxygen atoms in an ice crystal. The small circles 
are oxygen atoms below the level of the paper, and the large circles, oxygen atoms 

above the level of the paper.

the parameters were adjusted so that each oxygen nucleus was 
surrounded by 4 oxygen nuclei in a regular tetrahedral arrange­
ment at a distance of 2.76 A. Bernal and Fowler2) had shown 
that it is probable that the protons lie on the linkages between 
the oxygen nuclei, ca. 1 Å. from one and 1.76 Å. from the other. 
One and only one proton lies on each linkage, and the arrange­
ment is such that each oxygen nucleus has two and only two 
protons at a distance of ca. 1 Å. from it. In this way the ice is 
built up of molecules closely approaching the form and size, 
which Mecke3) has calculated for the molecule of water vapour 
from the infra-red spectrum (isosceles triangle with the oxygen 
nucleus at the apex, apical angle ca. 106° and sides 0.97 Å.). An

1* 
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extremely large number of such proton arrangements are possible. 
Bernal and Fowler tended to assume that the arrangement in 
ice was irregular, in any case in the region of the melting point. 
They write: “In that case ice would be crystalline only in the 
position of its molecules, but glass-like in their orientation.”

Finally, in 1935 Pauling4) pointed dut that Debye’s investi­
gations on the dielectric properties of ice showed that the con­
figuration of ice must alternate between the many alternatives 
given by Bernal and Fowler. Pauling calculates the number 
of possible configurations of an ice crystal to (3/2)N, where N is 
the number of molecules in the crystal, and by assuming that all 
these configurations, even at low temperature, are equally pro­
bable, he arrives at the result that ice must have a zero-point entropy 
of À/n(3/2)N = R 7n(3/2) = 0.806 kcal/gmol/degree. This value 
agrees extremely well with the value of 0.82 ±0.15 kcal/gmol/degree 
found experimentally by Giauque5). On account of this excellent 
agreement, the problem of the structure of ice had since generally 
been considered as solved.

The way in which Pauling develops his formula for the 
number of configurations only gives the formula as an approx­
imation. Pauling considers the proton-condition for a first, 
randomly chosen, oxygen atom in the lattice, while an exact 
development requires that also, and especially, the conditions for 
the other atoms should be considered. For these the proton­
position in the direction of the previously considered adjacent 
atoms is already defined.

An exact development of the formula can be obtained in the 
following way: We have an ice crystal, in which the position of 
all the oxygen atoms is known, and we will now determine the 
number of possible proton configurations. Let us imagine that 
we have decided on the proton configurations around all the 
oxygen atoms in and beneath one of the puckered hexagonal 
layers. Let us furthermore assume that we have decided on the 
situation around the oxygen atoms in a zig-zag row above this 
layer, and are now going to investigate the number of configura­
tions during the construction of an adjacent zig-zag row. It can 
easily be seen that, if the crystal is large, it is only the conditions 
during this construction that must be investigated in order to 
solve the problem. We will now choose to place the new zig-zag 
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row at that side of the first, where the low-lying molecules are 
present. In fig. 1, this means that the new zig-zag lines must be 
placed in the order 1, 2, 3, 4. When we do this, the new oxygen 
atoms, for which the proton configuration must be decided, will 
always have two adjacent atoms already in position, for which 
the configuration is decided. If these two adjacent atoms both 
have protons in the direction towards the atom considered, or 
if they both have no protons in this direction, then the proton 
placing around the atom considered is unambiguously decided. 
On the other hand, if the proton situation is different towards 
the two adjacent atoms, the proton placing can be performed in 
two ways.

Let us call the number of configurations in the system so far 
constructed, A + B, where A is the number of configurations, in 
which the two adjacent atoms show the same proton situation, 
and B, the number of configurations in which they show different 
proton situations towards the new oxygen atom. Hence the 
number of possible configurations rises from A + B to A + ‘IB, 
when this atom is included in the system. Around each oxygen 
atom, and hence also around the oxygen atom last added, two 
protons can be placed in six different ways. In the group of con­
figurations, the number of which we have calculated above to 
be A + 2B, the 6 ways occur in the following numbers: A/2, A/2, 
B/2, B/2, B/2 and B/2. Since, for reasons of symmetry, these 
numbers must be equally large, A must be equal to B. As a result, 
the number of possible configurations for each oxygen atom in 
the ice crystal rises in the ratio (A + 2B)/(A + B) — 2 3/2 and the 
total number of configurations becomes (3/2)A.* 

2. Mirror symmetric and centric symmetric atom pairs 
in ice.

In Pauling’s calculation of the zero-point entropy of ice it 
is assumed that all the possible configurations are so similar in 
energy that, even at the temperature at which they are fixed by 
freezing, they can be considered as equally probable. Pauling

* The demonstration given above is the result of a correspondance with 
Pauling. For the valuable help, which I have thus received, I wish to offer pro­
fessor Pauling my best thanks.
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expressed this (in “Nature of Chemical Bond’’ 2nd ed. 1945 p. 302) 
in the following words: “and that under ordinary conditions the 
interaction of non-adjacent molecules is such as not to stabilize 
appreciably any one of the many configurations satisfying these 
conditions with reference to the others.’’ The excellent agreement 
found by Pauling between the calculated and the found zero-point 
entropy of ice made such a great impression that this assumption was 
accepted without any serious examination. It is, however, possible 
that too great emphasis has been laid on this agreement. Giauque’s 
value for the zero-point entropy occurs as a small difference 
between two large values: Gordon’s6) spectroscopic value for the 
entropy of water vapour at 25° C and 1 atmos. (45.1 ±0.1) and 
Giauque’s5) thermically determined value for the difference 
between the entropy of water vapour at 25° C and 1 atmos. and 
of ice at 0° K (44.28 ± 0.05). It is perhaps possible that these 
values are not so accurately determined as the authors themselves 
think. In addition to the random errors, which are given in the 
above expressions, there may be systematic errors. We will there­
fore now try to investigate whether the assumption of Pauling 
has been justified.

As an introduction to the investigation of the energy content 
of the different configurations, we will attempt to find an ex­
planation for the reason why ice crystallizes differently from 
diamond, although the arrangement of the 4 adjacent atoms 
around an atom is the same in both cases, when we consider 
only the carbon and oxygen atoms and disregard the protons. 
The difference between the two arrangements can first be seen, 
when the six adjacent atoms around an atom pair are considered. 
The same circumstances, which cause the oxygen atoms in ice 
to be arranged in another way than the carbon atoms in diamond, 
can also be expected to make the configurations in ice ener­
getically different.

In diamond, the arrangement around an atom pair is always 
centre symmetric (see fig. 2). If the 6 adjacent atoms are projected 
onto a plane at right angles to the linkage between the two atoms, 
the 6 atoms form a regular hexagon.

In an ice crystal, the arrangement around oxygen atom pairs, 
which lie in the same puckered hexagonal layer, is centre sym­
metric, as in diamond; but around atom pairs, whose atoms lie
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in different layers, the arrangement is mirror symmetric (see fig. 2). 
If the 6 adjacent atoms are projected onto a plane perpendicular 
to the linkage between the two atoms, the adjacent atoms coincide 
in pairs. In ice x/4 of the atom pairs are in mirror > symmetric 
and 3/4 in centric symmetric positions. It is probably not possible

Mirror 

symmetric

Seen from the side Seen from above
Fig. 2. Centre symmetric and mirror symmetric positions of oxygen atoms in ice. 

to construct a crystal in which more than x/4 of the atom pairs 
are in mirror symmetric positions, if the arrangement around all 
the atoms is to be regularly tetrahedral. In an ice crystal, there 
are presumably as many mirror symmetric atom pairs as possible 
present.

The centric symmetric arrangement in diamond can be ex­
plained as a result of the repulsion between the electrons around 
the 6 adjacent atoms. But why does the mirror symmetric arrange­
ment occur in ice and even in as high a proportion as possible? 
This suggests that the mirror symmetric position for water mole­
cules is more stable and poorer in energy, than the centric sym­
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metric. If this is actually the case, then the distance between the 
atoms in mirror symmetric atom pairs ought to be less than the 
distance between atoms in centric symmetric atom pairs.

Accurate measurements on ice crystals have been carried out 
by Helen D. Megaw7). She made her measurements in order 
to investigate whether there was a difference between ice from 
heavy and from light water, but she found no difference. From 
her measurements it is possible to calculate the ratio c/a between 
the hexagonal main axis and the secondary axes perpendicular 
to the main axis to 1.6283, varying between 1.6276 and 1.6287 
for both heavy and light ice. In the ideal structure, with equally 
large distances and equally large angles everywhere, the ratio is

= 1.6283distance in centre symmetric atom pairs.

gives x
plained by inequality in the angles between the linkages of the 
atoms; but this inequality can scarcely be considerable, since no 
reasonable cause for this can be seen. The mirror symmetric 
linkages must therefore be several 1/10 °/0 shorter than the centre 
symmetric. In consideration of the slight compressibility of ice 
(1.2-IO5 per bar) this is not an inconsiderable difference.

If the mirror symmetric linkage between the H2O molecules 
is shorter than the centric symmetric, this linkage must also be 
more stable and poorer in energy than the centric symmetric. 
This gives us a cause for the fact that ice crystallizes hexagonally 
and not regularly.

y I == 1.6330. The deviation from this figure is small, but c/a =

must be considered as indubitably significant. If the deviation is 
to be explained by differences in atomic distances, the distances 
in mirror symmetric atom pairs must be 0.55 °/0 shorter than the 

(Q+2-r):

— 0.9945). A little of the deviation may perhaps be ex-

3. An electrical model of the H2O molecule.
One may well ask, why the mirror symmetric linkage is firmer 

than the centric symmetric. In order to attempt to find an ex­
planation for this, we will consider the forces which hold the 
molecules together in ice crystals. A H2() molecule is an electrical 
dipole. Assuming that electrostatic forces hold the molecules 
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together in ice just as electrostatic forces are responsible for 
holding the ions together in sodium chloride, we will attempt to 
calculate, from plausible assumptions, the electrostatic internal 
energy.

Our assumption is not a contradiction of the general practice of 
designating the bonds between molecules in ice as hydrogen bonds. 
The so-called hydrogen-bonds must principally be considered to be of 
electrostatic nature.

In order to calculate the effect of the electrostatic forces 
between molecules of ice, we must construct an electrical model 
of a water molecule. We know that the positive charges on the 
nuclei form an isosceles triangle with the oxygen nucleus at the 
apex and the two protons on the base line. In the water vapour 
molecule, according to Mecke3) the sides are 0.97 Å., but in the 
molecules of ice, according to Cross, Burnham and Leighton8) 
and Pauling4) they are slightly larger, ca. 0.99 Å. The apical 
angle in the water vapour molecule, according to Mecke, is 
ca. 106°, hence nearly equal to the tetrahedral angle 109.5°. Even 
if it is not certain that the protons in an ice crystal lie exactly 
on the linkages between the oxygen atoms, they must lie very 
close to them, and in our model, we will assume that they lie 
on the linkages (fig. 3 a). The three nuclei are encircled by 10 
electrons. Two of the orbits are quite close to the oxygen nucleus 
at the apex, and the 8 remaining electrons circle in pairs in 4 
eccentric orbits, which radiate tetrahedrally from the oxygen 
nucleus (comp. Barnes1), Mulliken5) and Bernal and Fow­
ler2)) (fig. 3 b). The two protons lie within two of these eccentric 
orbits. The electron orbits completely screen the positive charge 
of the oxygen nucleus. They also screen a considerable part of 
the charge of the protons, but give an excess of negative charge 
in the two eccentric orbits which do not contain protons. We will 
therefore consider an ice molecule from the electrostatic view­
point as a regular tetrahedron of radius 0.99 Å. with positive 
charges in two corners and negative charges in the other two 
(figs. 3c and 3d). As we shall see later, it is of little importance 
for our calculations whether the tetrahedron-model should in fact 
have deviated somewhat from regularity.

It is known from measurements of the dielectric constant of 
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water vapour that the dipole moment of the water molecule is 
1.87 Debye. If the tetrahedral model is to have this dipole moment, 
the electrical charges in the corners must be ± 0.171 e (e = the 
electronic charge). Hence the electrons screen most of the elec­
trical charge of the protons, and only give small negative charges 
in the remaining corners. In ice these tetrahedra are placed

Fig. 3. Electrostatic model of a water molecule: a position of the positive charges 
in a molecule, b the electron orbits, c and d two different representations of the 

regular tetrahedron model used.

at a mutual distance of 2.76 Å., calculated from their centres. 
We will therefore imagine an ice molecule as a sphere of radius 
1.38 Å., inside which 4 electrical charges are placed in a regular 
tetrahedral arrangement, as described above.

This molecular model of course only represents a rough ap­
proximation to the actual molecule with the negative electricity 
of the electrons distributed over large volumes. The simplicity of 
the model, however, permits many calculations to be performed 
with it, and if these give results, which agree with experience, 
it is probable that the model gives us a good representation of 
the electrical structure of the H2O molecule.
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4. The electrostatic energy between adjacent molecules 
in ice.

Two adjacent molecules in ice can have 6 different positions 
relative to each other. These are presented in figure 4. Position 
no. 1 can suitably be designated as inverse mirror symmetric 
(niSi) because the electrical charges at symmetrical places have

1 Inverse 
mirror symme trie

2. Obligue 
mirror symmetric

3. Obligue 
mirror symmetric

+

4. Inverse 
centre symmetric

- + +
¿T Obligue 

centre symmetric
6. Obligue 

centre symmetric

Fig. 4. The 6 positions relative to each other of two adjacent molecules in ice.

opposite signs. No. 2 and no. 3 are energetically alike and can 
be designated as oblique mirror symmetric (ms2 and ms,¡).

Similarly, two molecules in centric symmetric positions can 
have three different relative positions (see fig. 4). No. 4 will be 
designated as inverse centric symmetric (csj) because the elec­
trical charges at symmetrical places have opposite signs. The two 
remaining (no. 5 and no. 6) are energetically alike and can be 
designated as oblique centric symmetric (cs2 and cs3).

The electrostatic energy, to be overcome on separating two 
electrical molecular models (A and Æ) is EAB = (0.171 e)2 27 1/r, 
where r is the distance between two charges, and the summation 
must include all 16 combinations of two charges, one from each 
molecule.
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These energies are given in table 1, column 2, headed tetra­
hedron, r — 0.99 Å. It can be seen that the energy is rather 
different for the 4 possible positions. These EAB values given in 
italic type are those with which we shall deal in the following 
section.

Table 1.
Electrostatic energies EAB between adjacent molecules in ice, given 

in IO-12 erg.

Tetrahedron triangle

r =
0.99 Ä

r =
0.69 Â

r =
0.46 Ä

r =
0.276 Â

infinit, 
small

r =
0.99 Ä

Mirror sÿm. inverse (zns1) . . 0.5067 0.312 0.261 0.240 0.220 0.387
— — obliq. (ms2, ms3) 0.4319 0.217 0.144 0.105 0.055 0.309

Centric sym. inverse (cs1). . . 0.4117 0.191 0.111 0.058 0.000 0.290
— obliq. (cs2, cs3). 0.4792 0.279 0.233 0.195 0.165 0.355

In order to obtain some idea of the significance of taking the 
radius to be 0.99 Å., the other columns in table 1 give the energies 
for smaller tetrahedra (r = 0.69, 0.46 and 0.276 Â. respectively) 
and for an infinitely small dipole. In all cases, it was of course 
assumed that the electrical charges had such a size as to give 
the dipole moment 1.87 Debye. It will be seen that the energy 
falls, when the model is made smaller. The fall is initially rapid, 
but later becomes slow. On the other hand, the differences 
between the energies of the different positions increase, but 
this increase is rather slow. The figures show the importance 
of not being satisfied with assuming an infinitely small dipole, 
but using a more developed picture of the distribution of the 
charges.

The last column in table 1 shows the energy values obtained 
by using as model a triangle with apical angle 109.5° and sides 
0.99 Å., and with two equally large charges (0.342 e) placed on 
the base, and a negative charge, twice as large (—0.684 e) at the 
apex. It can be seen that this triangular model gives slightly less 
energy than a tetrahedron of radius 0.99 Å., but the differences 
between the energies are about the same. Triangular models, 
placed in the tetrahedral orientation, which is, however, not very 
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probable for them, thus give similar energies as tetrahedron 
models. Hence it may be concluded that the results, drawn from 
the following discussion, would not have been altered appre­
ciably, if another tetrahedral model had been used, in which the 
two negative charges had been moved slightly nearer to the 
centre and the tetrahedron had thus not been regular. It would 
have been reasonable to use such a model, if it had not made 
the calculations more difficult.

Bernal and Fowler2), who first tried to calculate the elec­
trostatic energies of ice crystals, used, for their calculations, a 
triangular model with positive charges (0.49 e) on the base and 
a negative charge, twice as large, placed on the bisector of the 
apical angle, slightly below the apex. This model does not fit 
our views on the electrons in the water molecule, and can not 
explain the tetrahedral layering of the molecules in ice. It is not 
easy to see why Bernal and Fowler have used this triangular 
model. They themselves point out the tetrahedral placing of the 
8 external electrons of the molecule and the possibility of using 
this to explain the tetrahedral grouping of the molecules in ice.

5. The electrostatic lattice energy of ice crystals.
The differences between the energies of inverse and oblique 

positions are, according to table 1, considerable:

EABms1 — EABms2 = 0.0748 10-12 erg. 
EABcs2 — Eabcs1 = 0.0675 10~12 erg.

Since, at 273° K, kT is equal to 0.0374 x 10“12 erg., it must be 
expected that at the melting point njsx-positions will be present 
in greater amount than ms2 and ms3 and that cs2- and cs3-positions 
will be present in greater amount than csj-positions, and the 
preferences must be expected to be even more pronounced at 
lower temperatures. The size of this temperature dependence 
will be considered later. We will here just assume that at low 
temperature the inverse position (msi) will be predominant among 
the centric symmetric, while at high temperature the inverse and 
the two oblique positions will approach equal probability.

This result is not in opposition to the observations made by 
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WoLLAN, Davidsen and Shull10) on the diffraction of neutron 
beams. These authors have shown that in ice “on the average 
two hydrogen atoms will be found close to a given oxygen atom”, 
and that the arrangement on the whole is irregular. This does 
not contradict the view given above, as according to that view 
there should be no periodic regularities in the placing of the 
protons in the crystal lattice of ice.

At low temperature the mean electrostatic lattice energy 
between adjacent molecules in an ordinary hexagonal ice crystal 
will be in mean x/4 EABmsx + 3/4 EABcs2 and at high temperature 
(which, however, is far from being reached at the melting point 
of ice) it will be: 712 EABmsx + 7e EABms2 + x/4 EABcsx + x/2 
EABcs2. In a hypothetical ice crystal with diamond structure, in 
which all positions are centric symmetric, the electrostatic energy 
between adjacent molecules would be in mean: at low temperature 
Eabcs2 and at high temperature x/3 EABcsx + 2/3 EABcs2. The 
total lattice energy between all adjacent molecules is obtained by 
multiplying these mean values by 2N, where N is the number 
of molecules. In table 2 are presented the lattice energies thus 
calculated, given in kcal/gmol.

Table 2.
The electrostatic lattice energy of ice crystals, calculated from the 

energies between adjacent molecules.

Ordinary hexagonal 
ice crystal

Hypothetic ice crystal 
with diamond structure

At low temperature..................
At high temperature.................

14.04 kcal/gmol.
13.21 —

13.88 kcal/gmol.
13.23 —

The electrostatic lattice energy must be assumed to constitute 
the main part of the heat of sublimation of ice. The values for 
hexagonal ice in table 2 are somewhat higher than the experi­
mentally determined heat of sublimation of ice: 12.14 kcal/gmol 
at 0° C. In order to obtain from the electrostatic lattice energy 
an accurate value for the heat of fusion of ice, it is, however, 
necessary to subtract the potential of the repulsive forces, which 
hold the molecules in place at a distance of 2.76 Å. and to add 
the potential of the van der Waal’s forces, hence a better agree-
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ment could scarcely be expected. Bernal and Fowler2) have 
shown that it is possible to obtain a heat of sublimation of the 
right order of magnitude by electrostatic calculation from their 
triangular molecular model. Using their estimated corrections for 
the repulsive forces (— 6.8), for the van der Waal’s attraction 
(+4.1) and for the attraction of next neighbours (+1.1), the 
latter however with opposite sign, we calculate for the heat of 
sublimation of ice:

at low temperature  
at high temperature

14.0 — 6.8 + 4.1 + 1.1 = 12.4
13.2 — 6.8 + 4.1 + 1.1 = 11.6

The electrostatic lattice energies in table 2 give us a possibility 
of obtaining a better understanding of the reason why ice crystal­
lizes hexagonally and not as diamond cubically. Admittedly the 
energies at high temperature are practically speaking the same 
for the hexagonal and for the cubic lattice, but at low temperature 
the lattice energy is 0.16 kcal/gmol higher for the hexagonal than 
for the cubic lattice, and as we shall see later, the melting point 
of ice must, in this connection, be considered as a low tempera­
ture. A difference in the lattice energies of 0.16 kcal/gmol is 
perhaps rather small to explain why the hexagonal lattice is to 
be preferred; however, it will later be shown that the difference 
increases to 0.42 kcal/gmol, when the electrostatic energies be­
tween molecules, which are separated by a single molecule, (next 
neighbours) are taken into consideration (table 4). For poly­
morphous compounds having a temperature of transformation 
in the region of ordinary temperatures, the heat of transformation 
is often no greater. Thus the heats of transformation between 
the different known modifications of ice lie within values of from 
0.016 to 0.304 kcal/gmol, and the heats of transformation for 
the solid modifications: of HCd is 0.248, of HBr 0.165 and 0.113, 
of HJ 0.126 and of H2S 0.108 and 0.361. For NH4C1 the two 
heats of transformation have been found to be: 0.200 and 0.427, 
for NH4NO3 0.402 and for CaCO3 0.30, all figures in kcal/gmol 
and according to Landolt-Börnstein, 3rd suppl. The heat of 
transformation for transformation of rhombic sulphur to mono­
clinic sulphur is 0.84. The molecule of sulphur is, however, 
also rather large, S8.
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6. The electrostatic energies between molecules of ice, 
which are separated by one or more molecules.

The electrostatic energies between molecules which are not 
adjacent have been ignored in the considerations so far described. 
However, the orientation of the other molecules around an 
adjacent molecular pair may be dependent on whether this pair 
is in centric symmetric or mirror symmetric position and whether 
this position is inverse or oblique. It is therefore possible that 
the electrostatic energies of the surrounding molecules could 
neutralize the differences in energy found for the 4 different 
positions of a molecular pair. If this was the case, the inverse 
and the two oblique positions would be equally probable and the 
proportion between them would be independent of temperature. 
We will therefore examine the electrostatic energies between mole­
cules which are not adjacent, more closely.

The electrostatic energies (E,lc) between two molecules, (A 
and C), which are separated by a single molecule (B), are far 
lower than the energies E4B between adjacent molecules, and the 
electrostatic energies (EAD) between two molecules (A and D), 
which are separated by two molecules (B and C), are even lower 
still. These molecules lie farther from each other and they are 
in addition more randomly orientated. A completely random 
orientation would reduce their contribution to zero.

Table 3 gives the result of a calculation of the electrostatic 
energies (EAC) between molecules, which are separated by one 
molecule.

The three molecules A, B and C can have a total of 72 different 
positions relative to each other. The energy for all these positions 
can be read off in the table.

A and C present either a positive or negative corner to B. Since 
the energy of the system can not be changed, when we invert 
all charges, however, we only need to examine the two possi­
bilities: that A and C present differently charged corners to B 
and that they present similarly charged corners to B. In the first 
case, when the energy is positive, we will designate the position 
as an «-position, and in the other case, when the energy is nega­
tive, as a ^-position. In ice, A and C must either both be in centric 
symmetric (cs) position to B, or one must be in centric symmetric
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Table 3. 
Electrostatic energies EAC between two molecules (A and C) in ice, 

separated by one molecule (ß), given in 10~12 erg.

A and C’s 
position to B a b A and C’s 

position to B a b

csx cs1.................. 0.0267 — 0.0450 csx ms¡......... 0.0439 — 0.0151
CSi CS2.................. 0.0611 — 0.0300 cs1 ms2................ 0.0194 — 0.0451
csY cs3.................. 0.0300 — 0.0300 cs^ ms3................ 0.0516 — 0.0451
C$a CS1.................. 0.0611 — 0.0300 cs2 mSj................ 0.0194 — 0 0516
cs3 CSj^.................. 0.0300 — 0.0300 cs3 msx................ 0.0451 — 0.0516
cs2 CS2.................. 0.0267 — 0.0267 CS% bJl S * * ••••••• 0.0439 — 0.0439
cs2 cs3.................. 0.0300 — 0.0611 cSg ms3. . ....... 0.0516 — 0.0194
^3 CS2.................. 0.0300 — 0.0611 ms 2 ••••••••• 0.0451 — 0.0194
cs3 cs3...................... 0.0450 — 0.0267 cs3 ms3................ 0.0151 — 0.0439

and the other in mirror symmetric (ms) position to B. Of the 6 
AC pairs around a B molecule, 3 are cs-cs and 3 cs-ms. Finally, 
both for cs- and ms-positions there are 3 possibilities: an inverse 
position (csj and msj) and two oblique positions (cs2 and cs3, 
ms2 and ms3). The symbol bcs1ms2 denotes a position, in which 
A and C present similarly charged corners to B, and A is in inverse 
centric symmetric position to B, while C is in oblique mirror 
symmetric position to B. Since the two oblique positions in the 
asymmetric AßC-system are no longer necessarily energetically 
alike, we must now differentiate between them.

This is done in the following way. When a molecule (A), as seen 
from an other molecule (B), must be turned through 120° clockwise in 
order to obtain an inverse position to it, we will denote the position 
as a 2-position (cs2, ms2). When the same effect is obtained by turning 
it 120° counterclockwise, we will call the position a 3-position (cs3, ms3). 
For a-positions it is furthermore necessary to clear that the charges of 
the B molecule must be placed so that by turning the B molecule 120° 
clockwise, seen from A (or C) around an axis through the A (or C) 
molecule, the corner towards C (or A) is brought over to a corner with 
the same sign. Let us denote the other possibility as an a'-position. Qn 
mirroring and subsequent inversion of an A B C-system, 2-positions are 
changed to 3-positions, 3-positions to 2-positions and a-positions to a'- 
positions. Since mirroring and inversion do not change the energy, we 
need not consider a'-positions especially. A ¿-position on inversion be­
comes a ¿-position again.

A control of the correctness of the calculations is obtained in
Dan.Mat.Fys.Medd. 27, no. 1. 2
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the following way. It can be shown that the following rule is valid: the 
EAC-value f°r an a-position is numerically equal to the £xc-value f°r a 
¿»-position, if the indices are calculated for the a-positions according 
to the following rule: 1^2, 2->3, 3->l.

7. The electrostatic lattice energy of ice crystals calculated 
with consideration of the energies between non-adjacent 

molecules.
Six molecules are connected with a pair AB of adjacent mole­

cules. We consider the EAC-values of these 6 C-molecules cor­
rectly if we add half of their 6 E^c-values to the EAB-value in 
question. When calculating the lattice energy of the whole crystal 
from EAB-values, each EAC-value will be accounted for by twro 
adjacent molecular pairs (AB and BC). The calculation of such 
corrected ^AB -values is made difficult by the fact that the ratio 
between inverse and oblique positions depends on the tempera­
ture. In the following section, the calculation is performed for 
the two limiting cases, corresponding to high temperature and to 
low temperature. By high temperature we understand here a 
temperature at which the inverse and oblique positions, in spite 
of their different energies, are equally probable, not only within 
whole ice crystals, but also within the different types of positions 
(a and b, cs and ms). (This state, however, is far from being 
reached at the melting point of ice). By lowr temperature we 
understand a state in which inverse positions are quite pre­
dominant among ms-positions, and oblique positions are quite 
predominant among cs-positions (comp, table 6).

Around a mirror symmetric molecular pair in an ordinary 
hexagonal ice crystal, all AC-positions will be of the type 
cs-ms, and 2/3 of them will be a-positions, and 1/3, ¿-positions. 
Around a centric symmetric molecular pair 4 positions will be 
of cs-cs type and two of cs-ms type. Of the 6 positions, 2/3 will 
be of the a-type, and 1/3 of the ¿-type, and we will assume that 
this is also true within the cs-cs group and the cs-ms group.

If this assumption should not be justified, it will only serve to 
increase the inaccuracy of the assumption that all (3/t~)N configurations 
of an ice crystal are equally probable.
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By using the EAC-values in table 3 and the F4B-values in 
table 1, the corrected E'AB-values (EAB cor.) presented in table 4 
are obtained.

If these corrected EAB-values are used in place of those 
previously used, the electrostatic energies between molecules, 
which are separated by a single molecule, are taken into con­
sideration in the correct way.

Table 4.
Electrostatic energies between two adjacent molecules in ice, cor­
rected for the EAC-values of the adjacent 6 molecules. The values 

are given in 10—12 erg.
A. Ordinary hexagonal ice crystal.

1. At low temperature.

mirror

2. At high temperature.

0.4552
0.5143

AB
AB
AB
AB

0.5067
0.4319
0.4117
0.4792

0.5196
0.4781
0.4532
0.5143

0.0129
0.0462
0.0415
0.0351

EAB WEAC eab cor-

sym. inverse (msj)
— oblique (ms2, 

sym. inverse (cs1)
— oblique (cs2,

centric

AB mirror sym. inverse (msj......................
AB — — oblique (ms2, ms3)..............
AB centric sym. inverse (csj........................
AB — — oblique (cs2, cs3)..................

B. Hypothetical ice crystal wi1

0.5067
0.4319
0.4117
0.4792

th diamon<

0.0328
0.0394
0.0430
0.0351

i structure

0.5395
0.4713
0.4547
0.5143

EAB 6/2 EAB cor.

1. At low tempei

AB centric sym. inverse (cs1)........................
AB — — oblique (cs2, cs3)................

rature.

0.4117
0.4792

0.0611
0.0220

0.4728
0.5012

2. At high temperature.
AB centric sym. inverse (CS1) ...................... . . 1 0.4117 0.0435
AB — — oblique (cs2, cs3) .......... ... J 0.4792 0.0351

The results of similar calculations for a hypothetical ice 
crystal with diamond structure are also given in table 4. At low 
temperature it is assumed that the majority of positions is oblique 

2‘ 
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(cs2 and cs3) and at high temperature that the positions csj, cs2 
and cs3 are equally frequent.

Calculations on the energies between molecules, which are 
separated from each other by two or more molecules, would be 
almost impossible to perform. The energies EAD between mole­
cules A and D, which are separated by the two molecules B and 
C, will, however, only contribute a very small effect, and the 
effect will tend to make the differences between the 4 “corrected” 
EAB slightly larger. This can be estimated by considering systems 
of 4 consecutive molecules A, B, C, D, the outermost molecules 
of which are simplified to real dipoles by coalescence of the three 
outermost charges in the tetrahedral models to a single charge 
at the centre of the triangle formed by the corners at which they 
are placed. It is permissible to make this approximation when 
it may be assumed that the three ways in which the three charges 
can be placed are equally probable. Molecules, separated from 
each other by more than three molecules, will be so randomly 
orientated with respect to each other that their mutual internal 
energy can be considered as being, on the average, insignificant.

With the corrected EAB from table 4, the following differences 
between the energies for inverse and oblique positions are ob­
tained, (the figures expressed in 10~12 erg):

With corrected i'AB-values
Previous calcula­
tion with un cor­

rected Eab- 
values

0.0748
0.0675

^ABmsi EABms2............

EaBcs2 ^ABCS1................

Low temp.
0.0415
0.0611

High temp.
0.0682
0.0594

It will be seen that consideration of the EAC-values has made 
the differences less. It is, however, only the difference between 
the two types of ms-bonds, which has become appreciably less, 
and only at low temperature. The differences are still larger than 
kT at 0°C (0.0374 X 10~12 erg). Our previous considerations on 
the predominance of inverse positions among ms-positions and 
oblique positions among cs-positions, are therefore still valid.

If the electrostatic lattice energy is calculated (by the method 
given on p. 14) from the corrected EAB, the figures given in 
table 5 are obtained.
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Table 5.
The electrostatic lattice energy of ice crystals, calculated from the 

corrected EAB-values given in table 4.

Ordinary hexagonal 
ice crystal

Hypothetical ice crystal 
with diamond structure

At low temperature................
At high temperature...............

14.93 kcal/gmol
14.32

14.51 kcal/gmol
14.32

These electrostatic lattice energies are about 1 kcal higher 
than those calculated in table 2. At high temperature the difference 
between the lattice energies for hexagonal and for cubic ice is, 
as in the previous calculations, extremely small, but at low 
temperature the lattice energy for hexagonal ice is 0.42 kcal higher 
than for cubic ice. According to the previous calculation it was 
only 0.16 kcal higher. The new higher value makes it easier to 
understand the reason why ice crystallizes hexagonally and not 
cubically. Even at the melting point of ice, as we shall see later, 
/nsj- and cs2- and cs3-positions are so predominant that the lattice 
energy must be assumed to lie nearer to that calculated for low 
temperature than to that calculated for high temperature. 8 

8. Quantitative calculation of the percentage of inverse 
and oblique positions.

Difficulties are encountered in exact calculation of the amount 
of inverse and oblique positions in ice. As an approximation, 
we will try to express the probability of the different positions by 
a Boltzmann e-function:

W = e~E,kT

where E is the energy of the position. If no correlation existed 
between positions of pairs close to one another, it can be 
shown that this formula is correct. There is, however, a con­
siderable correlation; this appears from the fact that, with­
out correlation, the number of configurations of an ice crystal 
should be 32N, while it is actually only (3/2)‘V- We may hope 
that, nothwithstanding this, the formula will be a useful approx-
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imation. Using the corrected EAB-values* from table 4, we have 
calculated the percentages of the 4 different positions at four 
different temperatures. The results are given in table 6.

Table 6.
Calculated percentages of inverse and oblique positions in ice.

273° K 136.5° K 90° K 68.25° K

Inverse ms-positions .................. 68.4 % 90.4 % 97.7 «/o 99.44 °/0
Oblique ms-positions.................. 31.6 - 9.6 - 2.3 - 0.56 -
Inverse cs-positions.................... 9.1 - 2.0 - 0.38 - 0.08 -
Oblique cs-positions.................... 90.9 - 98.0 - 99.62 - 99.92 -

The figures in table 6 show that, even at the highest possible 
temperature, the melting point, the ratio between inverse and 
oblique positions is still far from being the statistical ratio 1:2. 
At the boiling point of liquid air (90° K) only about 1 per cent 
of the oblique mirror symmetric and inverse central symmetric 
positions remain.

When the figures in table 6 are used, it must not be forgotten 
that they are rather uncertain; partly because they rest on the 
assumption of a rough molecular model, and partly because the 
forces between molecules, which are not adjacent molecules, are 
only considered incompletely, and finally because the use of 
Boltzmann’s equation is only an approximation. On the whole, 
however, the figures are to be considered as a useful approx­
imation.

9. The effect of temperature on the rate at which the 
equilibrium between inverse and oblique positions is 

reached.
The equilibrium between the energetically different inverse 

and oblique positions must be reached very rapidly at the melting 
point of ice. This can be concluded from the fact that the heat 
of fusion of ice has a very well defined size (1.4357 ± 0.0009

* It is preferred to use the mean of the values corresponding to high tem­
perature and to low temperature. The corrections for the Ead values have such 
a sign that it seems reasonable to use mean values in place of values nearer to the 
low temperature values.
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kcal/gmol. Cf. also the use of the ice calorimeter). If only 0.1 per 
cent of the positions are changed from inverse to oblique, this 
would change the heat of fusion by 0.0012 kcal/gmol, hence 
more than the indicated uncertainty of the determination.

If the temperature is lowered, a temperature range will 
finally be reached, at which the equilibrium between the positions 
of the molecules freezes in. Murphy10 11) has given some ob­
servations on how cooling of an electrically polarized ice crystal 
to the temperature of liquid air (90° K) freezes a permanent 
dipole moment into it. This shows that at this temperature the 
molecules in ice have ceased to change their orientation. Giauque 
and Stout5), who have carried out very accurate measurements 
on the heat capacity of ice down to very low temperatures, write: 
“At temperatures between 85 and 100° K the attainment of 
thermal equilibrium in the solid was very much less rapid than 
at other temperatures. For this reason the heat capacity measure­
ments in this region are somewhat less accurate than the others.” 
This slow attainment of equilibrium is, according to them, 
presumably due to the initial stages of excitation of some new 
degrees of freedom. They suspect that these new degrees of 
freedom are associated with the dipole orientation mechanism. 
It is tempting to explain slow attainment of equilibrium as 
due to fixation by freezing of the equilibrium between in­
verse and oblique positions. According to table 6, in this 
temperature range the energetically preferred positions are 
already so predominant (they constitute about 99 °/0) that 
it might seem reasonable to suppose that differences in the 
fixation of the configuration by cooling have had a per­
ceptible, but only slight influence. In order to investigate 
this, a theoretical calculation of the specific heat of ice is 
given and is compared with experimental data in the following 
chapter.

10. The heat capacity of ice.
In ice the H2O molecules can be considered as rigid systems, 

vibrating and oscillating without undergoing changes themselves 
(the slowest atomic oscillation in a H2O molecule (1590 cm-1) con­
tributes, even at the melting point, only 0.03 to the heat capacity
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(Cy in cal/mol/degree) according to Einstein’s function). Thus 
the ice molecules only contain heat energy in the form of “hindered 
translations” and “hindered rotations”, we will call these move­
ments vibrations and oscillations, respectively.

From the Raman spectrum of ice 8) we know that the wave 
number of the vibrations is 210 ± 2 cm-1 and that of the oscil­
lations 700—900 cm-1. The observed frequency 210 ± 2 must 
be due to vibrations, as it changes in the ratio j/18/20 from light 
to heavy ice, and the frequency 700—900, to oscillations as it 
changes in the ratio j/1/2 from light to heavy ice. The spectro­
scopic vibration frequency is in good agreement with the fre­
quencies calculated from the volume compressibility of ice. For 
the most rapid vibration in the direction of the main axis we 
have calculated 223 cm-1, for vibrations perpendicular to the 
main axis and to the line between two adjacent molecules, 
218 ciiF1, and for the vibrations perpendicular to the two former, 
203 cmL. The calculations are carried out on the assumption 
that the forces between the molecules are pure central forces, 
not influenced by valency angle forces, and that the compres­
sibility is the same in all directions.

A heat capacity of ice (Cu(Debye)) is calculated from the 
spectroscopic frequencies as the sum of three Debye functions 13) 
corresponding to 210 cm 4 (Cp(210)) and three others corre­
sponding to 800 cm1- (Cp(800)). Table 7 contains the results.

Table 7.
Heat capacity of ice, determined spectroscopically.

T°K Cp(210) Cv (800) Cv (Debye)

10.0 ................................... 0.017 0 0.017
15.05.................................... 0.058 0.001 0.059
20.1 ................................... 0.137 0.002 0.139
30.1 ................................... 0.452 0.008 0.460
37.6 ................................... 0.823 0.016 0.839
50.2 .................................... 1.582 0.039 1.621
60.2 .................................... 2.197 0.067 2.264
75.2 .................................... 2.996 0.131 3.127

100.3 .................................... 3.947 0.309 4.256
150.5 .................................... 4.918 0.933 5.851
200.7 .................................... 5.337 1.741 7.078
273 .................................... 5.609 2.822 8.431
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Fig. 5. Heat capacity of ice (Cv). Curve I: spectroscopic calculation. Curve II:
Same with the configuration contribution added. 0: Determinations of Giauque 

and Stout.

In fig. 5 curve I represents the spectroscopically calculated 
values (C„(Debye), and Giauque and Stout’s5) experimental 
values for Cp (which do not deviate appreciably from C„) are 
introduced as small circles. It can be seen that the general trend 
is not badly reproduced.

We will now calculate the contribution to Cv of the change 
in configuration in ice. Let ams be the fraction of mirror sym­
metric positions, which are oblique, Qms the difference in energy 
between inverse and oblique mirror symmetric positions and 
Cy(ms) the contribution to Cv of the change of mirror symmetric 
positions from inverse to oblique. Using Boltzmann’s e function 
as an approximation we obtain :

e-Qms/HT

~2
d«m. = Qm¡ 2e°-'Rr
(IT RT2 (eQ"IRT+ 2)a'

2’

and similarly for centre symmetric positions (acs fraction of 
inverse positions):
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o p-QclRT dcics = 9CS_____2 eQctlRT
dT RT2 (2 eQ“IRT+ l)2’

/O \2 a
C (CS) = ( — J ----- O IRT------ o*v \rt) (2 eQJRT+1)2

By introducing 0.793 and 0.871 kcal/gmol as values for Qms 
and Qcs respectively, (mean of values for high and low tem­
peratures) these equations lead to the contributions to the heat 
capacity given in table 8.

Contributions (Cv(ms) and Cv(cs)) to the heat capacity of ice from 
the change of configuration with temperature. Qms — 0.793 and 

Qcs — 0.871 kcal/gmol.

Table 8.

T 90° K 136.5° K 273° K

Cv(ms) 0.442 0.743 0.470
Cv(cs) 0.269 0.596 0.636

Cv(ms) + Cy(cs) 0.711 1.339 1.106

These contributions, when added to the spectroscopic Cv 
values, give a curve for the heat capacity (curve II in fig. 5) 
which deviates more from the experimental values than does the 
spectroscopical curve itself. This is not a serious objection against 
our calculated Q-values, as the spectroscopic calculation of the 
heat capacity of solids by means of Debye functions for sub­
stances with polyatomic molecules generally is only a poor ap­
proximation. A more serious objection is the high value (0.711) 
of the contribution to the heat capacity at the temperature (90° K), 
at which Giauque and Stout observed their small thermal irre­
gularities. The contribution in this temperature range should 
have been considerably less than 0.1 in order to be in agreement 
with Giauque and Stout’s observations. Small changes in Q cannot 
remove this disagreement. The contribution (Cv(ms) + Cv(cs)) 
has a maximum in the neighbourhood of T = Q/2R and with 
our Q-values the maximum lies at about 200° K. If the Q-values 
had been twice as high the maximum would have been removed 
to about 400° K and the contribution would have been:
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at 90° A 0.030, at 136.5°K 0.276, at 273°Æ 1.339

Also with lower Q-values acceptable values for the contribution 
can be obtained, but the lowering must be very great. If the 
Q-values had been 10 times as small, the contributions would 
have been:

at 90°K 0.172, at 136.5°A 0.067, at 273°Æ 0.021, 

and first with Q-values twenty times lower acceptable values 
would have been reached:

at 90°Æ 0.047, at 136.5° K 0.021, at 273°Æ 0.005.

We must conclude that acceptable values for the contribution to 
the heat capacity of ice from changes in the configuration equi­
librium cannot be obtained with our formulas and with Q-values 
in reasonable agreement with our calculations based on the tetra­
hedron model.

It is most probable that the use of the Boltzmann function 
has been an unsatisfactory approximation, and that the «-values 
are much smaller than those in table 6 (~0.1 °/0 instead of 
1 °/0 at 90° K). When the number of configurations is lowered 
from 32A to 1.5N on account of correlations (see p. 21) it does 
not seems improbable that the energy differences between the 
configurations have a strongly increased effect on the configuration 
equilibrium.

11. The zero-point entropy of ice.
The views on the structure of ice, presented here, are presum­

ably correct in the main lines, even if the calculated figures must 
be treated with some caution. If, however, they are correct in 
the main lines, then Pauling’s explanation of the zero-point 
entropy of ice can not be used. It requires that the energetic 
difference between the possible orientations of the molecules in 
ice must be so small that they are all almost equally probable, 
even at the low temperature at which they are fixed by freezing, 
and this seems to be very far from the case.

As a possible explanation for the zero-point entropy of ice, 
Giauque and Ashley5) have proposed the existence of ortho- 
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and para-states in the H2O molecule. Against this view, however, 
is the fact that a similar zero-point entropy (0.77 kcal/gmol, Lang 
and Kemp12)) has been found for heavy water. According to 
Giauque and Stout5, the ortho-para-hypothesis should give a 
considerably smaller zero-point entropy for heavy water than 
for light.

The question of the cause for the zero-point entropy of ice, 
therefore, for the present, remains open.

Summary.
1. A crystal in which every atom has 4 neighbours in regular 

tetrahedral arrangement is either cubic or hexagonal. In a cubic 
crystal the arrangement around two neighbours is always centre 
symmetric (see fig. 2), but in a hexagonal crystal the arrangement 
around two neighbour atoms is in some cases (maximally in a 
fourth of the cases) mirror symmetric and only in the rest centre 
symmetric. The fact that ice crystallises hexagonally and that in 
ice a fourth of the bonds are mirror symmetric suggests that the 
bond energy between two H2O molecules in mirror symmetric 
position is greater than that between H2O molecules in centre 
symmetric position. Earlier measurements by H. D. Megaw show, 
in agreement with this suggestion, that the mirror symmetric bond 
in ice is actually x/2 °/o shorter than the centre symmetric.

2. Using a tetrahedron with positive charges on two corners 
and negative charges on the other two as a model of a H2() 
molecule (fig. 3), the suggestion given above can be supported. 
For the ordinary hexagonal ice crystal the electrostatic lattice­
energy is calculated to 14.91 kcal/gmol and for a hypothetical 
cubic ice crystal to 14.51 kcal/gmol. These values are valid for 
low temperatures. For reasons given in the following, the values 
increase with temperature and approach each other somewhat.

3. An ice crystal can posses a large number of different 
configurations (1.5A, where N is the number of molecules). The 
reason is that both centre symmetric and mirror symmetric 
positions can be either inverse or oblique (see fig. 4). It has been 
assumed that all these configurations have nearly the same lattice 
energy (Pauling). Using the tetrahedral model described above 
it is found, however, that the electrostatic bond energy is con- 
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siderably greater for the inverse mirror symmetric and for the 
oblique centre symmetric than for the two other positions (see 
table 4).

4. In an ice crystal the number of the two bond types with 
the highest bond energy must increase with decreasing tempera­
ture at the cost of the two other types. By means of Boltzmann’s 
e-function, approximate values are calculated for the ratio be­
tween inverse and oblique positions at several temperatures 
(table 6). Even at the melting point the ratio is far from the 
statistical one, corresponding to equal bond energy.

5. At the melting point the configuration of ice changes very 
rapidly, but at the temperature of liquid air (90° K) the con­
figuration freezes in. At this temperature, according to Boltz­
mann’s e-function, about 99 °/0 of the positions are the most 
stable inverse mirror and oblique centre symmetric positions 
(see table 6). Consequently it could seem reasonable that the 
irregularities in the thermal behaviour of ice in this tempera­
ture range, found by Giauque and Stout, were rather insigni­
ficant.

A calculation, however, revealed that even the small proportion 
of about 1 °/0 oblique mirror and inverse centre symmetric 
positions should create irregularities much greater than those 
observed by Giauque and Stout. It is suggested that the ap­
plication of Boltzmann’s e-function here represents a poor ap­
proximation, and that at 90° K the most stable positions pre­
dominate to a proportion of perhaps 99.9 °/0.

6. If the 1.5X configurations of an ice crystal are not all 
equally probable at the temperature when the configuration 
freezes in, then the zero-point entropy of ice must be smaller 
than Pauling’s value R In 1.5 = 0.806 kcal/gmol/degree. The values 
in table 6 suggest that the value of the zero point entropy should 
be only about a hundredth of this value. It is not yet possible 
to give another explanation for the experimentally found value 
0.82 ± 0.15.
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IL
CHANGE IN CONFIGURATION AND 

MOLECULAR TURNS

1. Information, gained from the dielectric properties of ice.
It is mentioned in part I of this series that ice changes con­

figuration very frequently at the melting point, and that its con­
figuration is first frozen in near the temperature of liquid air 
(ca. 90° Æ).

Investigations on the dielectric properties of ice have yielded 
more accurate information about the power of ice to change 
configuration. P. Debye1) has shown that it is possible to explain 
the dielectric properties of ice by assuming that its dipole mole­
cules, under the influence of thermal movements, frequently 
turn. In the absence of external electrical forces, the molecules 
are orientated so that their dipole moments are mutually neu­
tralized, but under the influence of an external electrical force 
the molecules become arranged so that the ice has a dipole 
moment in the direction of the force. Debye writes that under 
the influence of a field strength of 1 volt/cm it is only necessary 
for one molecule in 5 million to turn in order to produce the 
dipole moment which the ice obtains under the effect of this field 
strength. The rate at which the orientation of the molecules takes 
place can be investigated by subjecting ice to an alternating 
current field. At low frequencies the molecules have time to 
adjust themselves to the field, and a dielectric constant equal to 
the static is found; but if the frequency is increased, a frequency 
range can be reached, at which the molecules of ice do not have 
time to adjust themselves, and at sufficiently high frequencies 
ice possesses a dielectric constant, corresponding only to the 
electron- and atom-polarization of the molecules.
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Smyth and Hitchcock2) have performed measurements of 
this type. From their measurements Dorsey3) has calculated, 
by means of Debye’s equations, values for r, the relaxation time 
for the molecular turns in ice. Table 1 gives these values for a 
few temperatures. Values for n = 1/r, the rate of turns performed 
by a molecule, are also given in the table.

Table 1.
Relaxation time (r) and rate (n — 1/r) of molecular turns, 

determined dielectrically.

t° c 0° — 30° — 70°

T X 106 sec........................... 1.205 25.3 1467
n X 10-6 sec-1.................. 0.831 0.0395 0.00068

No great accuracy must be ascribed to these calculations of 
T and n. Debye’s equation does not reproduce Smyth and Hitch­
cock’s measurements quite exactly, especially not at temperatures 
of below —30°. According to W. Kauzmann’s4) opinion, the 
Lorentz correction used for the internal field is probably too 
large. This correction makes the n values ca. 16 times higher. 
It is not improbable that all the n values are e. g. 5 times too high.

From the decrease of n in the interval 0° to —30°, an energy 
of activation E for the dipole turns of 13.4 kcal/gmol is calculated 
by means of the expression E = Rdlnn/d (1 /r). Since Dorsey 
has smoothed the figures of Smyth and Hitchcock rather strongly, 
I have carried out a new calculation of n and E from Smyth 
and Hitchcock’s unsmoothed figures. This led to almost the 
same E value (13.5 kcal/gmol). From the same experimental 
material Kauzmann has calculated 12.2 kcal/gmol. He has pre­
sumably arrived at the lower value by also considering the more 
uncertain measurements at temperatures below —30°. From the 
measurements of Wintsch5) and E. J. Murphy6), Kauzmann 
calculates 9.3 and 14.6 respectively (here and in the future the 
energies of activation are always stated in kcal/gmol). Finally 
Højendahl7) by calculations from the size of the dielectric loss 
in Smyth and Hitchcock’s measurements, obtained the value of 
10.8. The equation presented by Højendahl for the loss angle,
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however, only fits after the introduction of an empirical coef­
ficient in place of the theoretical. Everything considered, a value 
for the pnergy of activation of ca. 13 seems to be most probable.

2. Energies of activation for turns of ice molecules, 
calculated from molecular models.

It is not possible by turning a single molecule to transform 
an ideal ice crystal of the type described in part I into a new 
stable configuration. A consequence of this is that even at the 
melting point changes in configurations can be rare: The thermal 
movements of the molecules will cause the disappearance of the 
forces which are responsible for the crystal structure, before the 
molecules can turn into a new configuration to any great extent.

If a new stable configuration is to be obtained, a ring of 
molecules must turn simultaneously. Such a ring contains at least 
6 molecules. The ring must fulfill the condition that the order 
of positive and negative corners is the same throughout the whole 
ring. This condition is only fulfilled by a small fraction of all 
existing rings. Turns of molecular rings, which fulfill this con­
dition, will certainly change the configuration of the crystal, but 
not its dipole moment, and hence the large dielectric constant 
of ice can not be caused by such turns. Turns of molecular 
rings must be rare, because a coordinated turning of many mole­
cules simultaneously is statistically not very probable and also 
and especially because a ring during its turning must pass a high 
energy threshold. If, as molecules, we. use the tetrahedral model 
described in the previous paper, and only consider the electro­
static forces, we obtain for the critical energy threshold (the energy 
of activation) a value of at least 21.6 kcal/gmol (for a six 
membered ring).

Details of the calculation. In a ring of the type described 
above, it is possible, by simultaneously turning all molecules through 
120° round one of their tetrahedral axes, to reach a new stable con­
figuration. The axis of rotation must be one of the two tetrahedral 
axes which do not lie in the ring itself. During the turning a critical 
energy threshold is passed when the molecules have turned through 
60°. In order to reach this threshold position, work must be performed 
against the electrostatic attraction between the molecules of the ring 
and the surrounding molecules and also between the molecules of the 
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ring themselves. If we only pay attention to the forces between adjacent 
molecules and disregard the small forces, which are active between two 
adjacent molecules, when the one molecule rotates around their common 
axis, we shall, for each of the molecules in the ring, only consider the forces 
from a single molecule outside the ring. Hence the problem is to bring two 
molecules (A and B) into the positions shown in fig. 1 a. Since, however, 
the calculations can only be made approximately and are easier to carry

Fig. 1. Fig. 2.
Fig. 1. Threshold position between a ring molecule and a molecule outside the 

ring, a correct, b modified. Rotation axes marked with an arrow.
Fig. 2. Threshold position between two ring molecules, a correct, b modified. 

Rotation axes marked with an arrow.

through for the modified position shown in fig. lb, the calculations, are 
performed for the latter. The modification consists of a rotation of the 
B molecule ca. 123/4° around an axis perpendicular to the plane of the 
drawing. This modification will only change the energy of activation 
slightly and will generally make it a little lower. The energy necessary 
for bringing the molecules to the threshold position is somewhat de­
pendent on the position of the negative and positive charges on those 
corners of the A molecule, which are furthest away from the B molecule, 
and on whether the initial position has been centric symmetric or mirror 
symmetric (the modified threshold position is the same in both cases). 
The calculation shows that 2.3 to 3.6, mean ca. 3 kcal/gmol, is necessary. 
If there are 6 molecules in the ring the consideration of the surround­
ing molecules alone thus causes an energy of activation of at least 
6x2.3 = 13.8.

The energy necessary in order to bring two adjacent molecules in 
a ring into the critical threshold position depends on the mutual positions 
of the molecules (mirror symmetric or centric symmetric, inverse or 
oblique) and of the position of the axes of rotation in the molecules. 
The lowest transfer of energy is required, when the molecules are in 
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mirror symmetric position and the axes of rotation lie in the same 
plane (fig. 2 a). The modified position 2 b, in which the mutual position 
of the molecules is more symmetric, is used in the calculations and can 
be expected to give a slightly lower energy of activation. The amount 
of energy necessary depends somewhat on the position of the charges 
on the corners of the molecules which in 2 b are furthest apart. A mean 
value of at least 1.3 kcal/gmol must be considered. Since there are at 
least six molecules in the ring, the contribution to the energy of activation 
from the electrostatic forces between the molecules in the ring must 
be at least 6x1.3 = 7.8. Hence the total energy of activation will be 
at least 13.8 + 7.8 = 21.6.

While turns of molecular rings do not change the dipole 
moment of an ice crystal, turns of a molecular row between two 
surface points will change the dipole moment. If the ice crystal, 
however, is not ultramiscropically small such turns of molecular 
rows can not be of much importance. Impurities in the ice will pro­
duce internal surfaces in it, but it is not probable that turns of 
molecular rows, beginning and ending in impurities in the crystal, 
will be decisive for the rate of dipole turns responsible for the 
dielectric properties of ice. In contrast to the many molecules 
in the interior, the few molecules which lie in the surfaces, both 
external and internal, of the crystal will be able to turn and thus 
alter the dipole moment of the ice crystal, but it is not probable 
that such turns of surface molecules can play any important role. 
Even in an ideal, pure ice crystal, however, lattice faults occur 
and at these fault sites single molecules will be able to turn and 
their dipole axes to change direction. We must here turn our 
attention to the lattice faults which are caused by the thermal 
movements of the molecules and which occur at a concentration 
determined by the temperature. There are two types of such fault 
sites: some, which are due to the incorrect mutual orientation 
of two neighbour molecules, there being either two protons or 
no protons between them, and others, which are due to ionization, 
the presence of H3O+ and HO“ ions in the lattice. We will in 
this paper examine the orientation fault sites.

3. Orientation fault sites as cause of molecular turns in ice.
If an ice molecule, on account of especially strong thermal 

movements, has turned around such a large angle that two protons 
3*
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have come between its oxygen atom and the oxygen atom of an 
adjacent molecule and no proton between its oxygen atom and 
the oxygen atom of another neighbouring molecule (fig. 3 b) the 
chance that it will turn back is very great; but it may happen 
that one of the neighbours has turned before it can turn back. 
In such a case the two sites with two or no protons respectively 
have been separated (fig. 3 c). Continued molecular turns can 

<2. Normal b. Orientation faults in adjacent linkages C. Orientation faults separated

Fig. 3. Formation of orientation fault sites.

separate the two sites completely and cause the appearance of 
two independent fault sites of opposite types: sites with two 
protons and sites with no protons between the oxygen atoms. 
These fault sites will migrate through the crystal until they meet 
a fault site of the opposite type with which they will recombine. 
Under the influence of formation and recombination of such fault 
sites, an equilibrium will be reached in the ice crystal with equally 
high concentration of these two types of orientation fault sites.

Two molecules, between which there is an orientation fault 
site, can easily turn, and every time a molecule turns the fault 
site will move over to an adjacent site and the dipole moment 
of the molecule will be turned through 90°. The fault sites will 
thus act as a kind of catalyst for the promotion of dipole turns.

If the tetrahedral model, previously described in part I, is 
used, the formation of such fault sites is estimated to require a 
accumulation of energy E of between 10.2 and 13.6 kcal/gmol, 
and the critical energy threshold for turns of the molecules 
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between which the fault site lies, can be estimated to be 2.5 
kcal/gmol. Consequently the concentration (c) of the fault sites 
will change with temperature according to the expression din 
c/dT — E/RT2, where E is a figure between 10.2 and 13.6, and 
the rate of turns (n') per fault site will change according to the 
equation din n'/dT = 2.5/RT2. The rate of turns per H2O mole­
cule (n = cxn) will therefore change according to the equation 
din n/dT = (E + 2.5)/ET2. The apparent energy of activation 
for the number of turns must therefore lie between 12.7 and 
16.1. The energy of activation for dipole moments estimated 
from the dielectric properties of ice was 13. The calculation 
shows that it is permissible to assume that the dipole turns which 
are required by Debye’s theory are the turns made by the mole­
cules at the orientation fault sites. On the basis of this assumption 
and assuming a threshold value of 2.5, the energy content of 
the orientation fault sites can be estimated to be 10.5.

The accumulation of energy necessary for the formation of an 
orientation fault site is calculated in the following way. In a gram 
molecule of ice, the electrostatic lattice energy originates chiefly as the 
result of the attraction between the 2N adjacent molecular pairs. The 
total lattice energy, according to table 2 in the first part of this paper, 
is about 13.6 kcal/gmol and the bond energy between a single molecular 
pair is consequently 13.6/2 N. At an orientation fault site the two 
adjacent molecules possess a bond energy numerically equal to the 
normal energy, but with the opposite sign. Hence every such fault site 
will diminish the lattice energy by 13.6/N and the formation of a gram 
molecule of fault sites will require 13.6 kcal. This value must be con­
sidered as a maximum value. For in the calculations it is assumed that 
the two similarly charged tetrahedral corners are in the normal position 
to one another, and that both lie on the connecting line between the 
centres of the tetrahedra. When the corners are differently charged the 
existence of this position is due to electrostatic attractions between the 
charges in the corners. The repulsion between two similarly charged 
corners must cause the corners to be forced away from the connecting 
line between the centres in opposite directions. If they are removed in 
this way 0.3 Å from the connecting line (the radius of the tetrahedron 
is 0.99 Å), the distance between the corners increases ca. 30 °/0, and if 
the distances between the differently charged tetrahedral corners at 
the other places of the lattice are assumed not to be altered appreciably 
from the hormal value 0.78 Å, the total lattice energy will not be 
decreased by 13.6/7V on account of a fault site, but only by 10.2/N. We 
will assume that the formation of a gram molecule of fault sites must 
require between 10.2 and 13.6 kcal.
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The critical threshold energy for molecular turns at a fault 
site can be calculated in the following way. Fig. 4 shows the 
initial, the threshold and the final positions during turning of a 
molecule (A). Before turning the fault site lies between molecules 
A and B and after turning between A and C. In the initial position 
the contribution made by the molecular pairs AB, AC and AD 
to the lattice energy amounts to 2x6.8/?/—6.8/iV = 6.8/Ä7, and

Fig. 4. Positions during moving of an orientation fault site.

the same contribution is given by the three pairs in the final 
position. In the threshold position the contributions of AB and 
AC are both zero. The contribution of AD (using the same ap­
proximations as on p. 34) can be calculated to 3.8/?/. In order 
to reach the threshold value an energy accumulation of (6.8 
— 3.8)/;Vis consequently required, corresponding to 3.0 kcal/gmol. 
This accumulation of energy will also be decreased on account 
of the deformation of the lattice at the fault site. In the following 
we will assume this value to be 2.5.

The rate of turns (n) per H2O molecule is the product of the 
number (c) of fault sites per molecule and the rate of turns (n') 
per fault site (n = cxn'). It is not possible to carry out the 
separation of n into these two factors with certainty; but in order 
to obtain a plausible value of c we have tried to carry out a 
reasonable separation, paying attention to the energy content of 
the fault sites (10.5) and to the critical energy threshold for turns 
at a fault site (2.5). From the Raman spectrum of ice it is known 
that the frequency (v) of the hindered rotation of the ice mole-
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cules is ca. 2.4 x 1013. Since turning of a molecule to a new 
equilibrium position requires that an energy threshold of 2.5 
must be passed, we will assume that the rate of such turns per 
fault site is n' — v x 2 X e~~2-°/RT (the factor of 2 is due to the fact 
that at each fault site there are two molecules that1 can turn). 
From this expression the value of n' at 0° C is calculated to 
4.8 x 1011. The rate of dipole turns (n) per molecule is according 
to table 1 0.83 X 106 at 0°. If the dipole turns are due to fault 
sites, the number of these fault sites per molecule must be 
c = n/n' = 1.7 X IO-6 at 0° and hence about 10~6 of each of 
the two types. This number is rather too large for a state with 
an energy content of 10.5 kcal/gmol. According to Boltzmann’s 
e-function the number should lie somewhere near —
0.36 X 10~8. It must be remembered, however, that Boltzmann’s 
function here represents only an approximation. If the uncertain 
Lorentz correction for the internal field is omitted in the cal­
culation of n from the dielectric properties of ice, the number 
of fault sites per molecule decreases to 1.1 x 10-7. Even with 
this modification the number of orientation fault sites, necessary 
to explain the dielectric properties of ice, is 30 times higher than 
expected from the Boltzmann calculation. This is, however, no 
sufficient reason to discard this explanation.

Summary.
1. Debye has explained the dielectric properties of ice by 

the existence in ice of dipoles which can turn. From the dielectric 
properties of ice the rate of dipole turns is calculated to ca. 
0.83 X 106 per second per molecule at 0° and the energy of 
activation to ca. 13 kcal/gmol. If the Lorentz correction used 
for the internal field is too large or even may be perhaps com­
pletely omitted, the rate of dipole turns may be up to ca. 16 
times less.

2. The configuration of an ideal ice crystal can not change 
by turning of a single molecule, but only by the simultaneous 
turning of a closed ring of molecules. Such turns of molecular 
rings do not alter the dipole moment of the crystal and therefore 
can not represent the dipole turns required by Debye’s theory. 
If the tetrahedral model with electric charges on the corners, 
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described in part I of this series, is used as a model of a water 
molecule, the energy of activation for a turning of a ring of six 
molecules is calculated to at least 21.6 kcal/gmol.

3. In an ice crystal fault sites are present where two or no 
protons are found between two oxygen atoms instead of the one 
normally present. These two types of fault sites occur in equal 
amounts. Molecules, between which such orientation fault sites 
are present, can easily turn and thereby rotate their dipole 
moments 90°. The apparent energy of activation for such turns 
is calculated from the above mentioned molecular model to 
between 12.7 and 16.1 kcal/gmol. The energy of activation thus 
has a size similar to that required for dipole turns in Debye’s theory 
(ca. 13 kcal/gmol). It may therefore be assumed that the mole­
cular turns at orientation fault sites represent the dipole turns 
required by Debye’s theory.

4. The rate of molecular turns at an orientation fault site is 
estimated to be ca. 4.8x1011 per second at 0°, and the con­
centration of each of the two types of fault sites to be ca. 1 in 
each 1()6 ice molecules. If the rate of dipole turns in ice should 
be less than 0.83 X 106 sec 1 per molecule the concentration of 
fault sites will be correspondingly higher.
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III.
IONISATION OF ICE AND MOLECULAR TURNS 
PRODUCED BY THE IONS. THE PROTON JUMP 

CONDUCTIVITY OF ICE (AND WATER)

1. Ions as producers of molecular turns.
In addition to orientation fault sites, there exist in ice fault 

sites, which are due to the presence of ions. If a proton jumps 
from an H2O molecule to a neighbouring molecule, an H3O+ 
and an HO- ion are formed. The chance that the proton will 
jump back again is great; but before there is time for this to 
happen, a proton may have jumped over from the H3O+ ion to 
a third H2O molecule (or from another H2O molecule to the 
HO“ ion). Hereby two spacially separated ions have appeared 
(see fig. 1). By new proton jumps of the types H3O++ H2O -* 
H2O + H3O+ and H2O + H()“ > HO“+ H2O the ions may be 
separated further from each other and migrate freely in the 
crystal lattice and cause the ice to become electrically conducting. 
As is well known, it is usual to explain the exceptionally high 
conductivity of the H3O+ ion in water in a similar way by 
assuming that this ion can move its charge, not only in the same 
way as normal ions, by moving as a unit through the medium 
of the solution, but also by the jumping of one of its protons 
over to an adjacent H2O molecule, and similarly, the abnormally 
high conductivity of the HO“ ion is explained by the jumping 
of a proton from an adjacent H2O molecule over to the HO- 
ion1). In ice, the H3O + and HO- ions formed will continue to 
migrate until an H3O+ and an HO- ion meet and thus have 
the possibility of recombination. Formation and recombination 
of the ions will lead to a state of equilibrium with definite ion 
concentrations.
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The ion concentrations in ice must be of a similar order of 
magnitude to those in water, since the conductivities of ice and 
water do not differ considerably. J. H. L. Johnstone2) gives the 
following values for the static conductivity of ice (x):

Temp. —Io — 4° —10° —19°
xxl()8 2.8 0.23 0.11 0.026

His determination at —Io appears improbably high. According 
to the other determinations, a rise in temperature of ca. 5° causes
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Fig. 1. Formation of ions by proton jumps.

a doubling of the conductivity, hence it is not natural that a rise 
from —4° to —Io should make the conductivity 12 times higher. 
A value of 0.35 X 10~8 at —Io (and 0.4 x 10~8 at 0°) would be 
more reasonable. Perhaps the high value at —1° is due to the 
presence of impurities in the ice, which have contributed to the 
conductivity, because they were - still present in the form of 
aqueous solution between the ice crystals.

The conductivity of water at 0° is calculated from the ionisation 
constant of water (0.119 x 10-14) and the molecular conductivity 
of the ions (345) to x = 1.2 x 1() ~8. This value is 2.3 times lower 
than the conductivity given by Johnstone for ice at —Io, and 
3 times higher than the value obtained for ice at 0° by extra­
polation from the determinations by Johnstone at lower tempera­
tures.

A calculation of the ion concentration in ice can be performed 
as follows. We will assume that the conductivity of ice is due 
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exclusively to its content of H3O + and H0— ions, and that 
these ions move exclusively by means of proton jumps. It is 
improbable that these ions as a unit can migrate through the 
crystal lattice of the ice at rates which are of significance in this 
connection or that other ions can do it.

In passing, it should be mentioned that, on account of these 
considerations, impurities do not have the same large effect on 
the conductivity of ice as they have on that of water. It is there­
fore easier to determine experimentally the conductivity of pure 
ice than that of pure water.

Only a fraction of the conductivity of pure water (1.2 X 10—8 
at 0° C) is due to proton jumps. Of the molecular conductivity 
of H3O+ ions at 0°, m = 240, only 200 is due to proton jumps, 
and of the molecular conductivity of HO- ions at 0°, p, — 105, 
only 64 is due to proton jumps (see section 6 for further details). 
Hence the proton jump conductivity of pure water at 0° is 1.2 X 10—8 
X 264/345 = 0.92 X 10~'8. We will now make the assumption 
that proton jumps between ions and H2O molecules in ice are 
just as frequent as they are in water at the same temperature 
between ions and H2O molecules in the right positions (hydrogen 
bond positions) to each other. According to conceptions developed 
later, the rate of proton jumps in water is reduced, on account 
of the more random orientation of the H2O molecules to the 
ions, at 0° in the ratio 0.93 for H3O~ ions and 0.77 for HO- 
ions. When this reduction is taken into consideration, the mole­
cular conductivities of the ions in ice amounts to: for H3O+ ions, 
200/0.93 = 215 and for HO- ions, 64/0.77 — 83, total 298. If 
the specific conductivity of ice is taken to be 0.4 X 10—8 at 0°, 
the molecular concentrations of the H3()+ and the HO- ions are 
calculated to 1.34 x 10-8, corresponding to the transformation of 
0.27 X 10—9 parts of the H2O molecules to H3O + ions and of the 
same amount of H2O molecules to HO- ions.

2. Rates of proton jumps in ice.
From the specific conductivity of ice it is possible to calculate 

how frequently proton jumps of the types H3O++ H2O H2O 
+ H3O+ and H2O + HO- -> HO- + H2O take place. The cal- 
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culation can be performed by the use of Einstein’s theory for 
Brownian movements.

Einstein3) has developed the following equation:

I) = d2/(6r)

where I) is the coefficient of diffusion of a particle and d2 the 
mean value of the square of the displacement of the particle in 
space in the time r. The coefficient of diffusion for a monovalent 
ion can be calculated from its molecular conductivity by means 
of the following equation :

I) = /z X RT/F2X 107 = /z X 0.244 x 10~6 at 0° C.

If the molecular conductivity of an ion is known, it is possible, 
from Einstein’s equation, to calculate an expression for the time 
T taken by the ion to be displaced a certain distance. To give 
an exact result, Einstein’s equation requires that the displace­
ments of the particle are changed by collisions many times within 
the time t. We will, however, use the equation for the approximate 
determination of the mean time (r0), which the ion is displaced 
2.76 Å, corresponding to a proton jump. The rate of proton jump 
displacements of an ion will then be

/ n
1 QI)

To “ (2.76 X IO-8)2
= /zX0.193x IO10 sec-h

If the values of // for H3() + (215) and for HO- (83) are sub­
stituted in this equation, we obtain for the rate of proton jumps 
at an H3O + ion, 41.5 X 1010 and at an HO- ion, 16.0 X 1010, all 
per second. For the rate of proton jumps per H2O molecule we 
finally obtain (c is the molar ion concentration and 50.9 the 
number of gram moles in 1000 cm3 of ice):

n = n X c/50.9 = c X ft X 3.79 X 107 = x X 3.79 x 1010.

If the specific conductivity of ice at 0° is taken as 0.4 X 10~8, 
the rate of proton jumps per H2O molecule in ice is calculated 
by means of this equation to 152 per second. Even at the melting 
point, where the proton jumps must be most frequent, an H2O 
molecule only turns ca. 150 times in a second owing to the 
presence of the H3O+ and HO~ ions in the ice.
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3. Ionisation and proton jumps at the ions cannot explain 
the dielectric properties of ice.

The idea that proton jumps and ionisation may be of signifi­
cance for the occurrence of the frequent dipole turns, required 
by Debye’s theory for the dielectric properties of ice, has been 
advanced from several quarters.

M. L. Huggins4), who was perhaps the first to put forward 
this view, was doubtful of the idea as it leads to the existence 
of H3O+ and HO ions in ice. He therefore considered proton 
displacements in rings of H2O molecules as the explanation for 
the high dielectric constants of ice and water. He does not appear 
to have noticed that proton displacements in rings do not change 
the dipole moment.

W. M. Latimer5) has put forward the idea that the con­
figuration changes in ice are connected with the processes during 
which the ions H3O+ and HO’- appear and disappear in ice. 
Since the rate at which these processes occur may be high, even 
if the concentration of the ions is low, Latimer thinks that there 
is a possibility of explaining the rapid configuration changes in 
ice in this way. Quantitatively viewed, this is, however, not possible. 
Formation and recombination of the ions must be a far more 
infrequent process than molecular turns during migration of 
the ions.

W. Kauzmann6) has expanded Huggins’ idea in an interesting 
way. He has put forward the proposition that the changes in the 
configuration of ice could be due to the proton jumps, which 
accompany migration of the ions in ice. An H2O molecule which, 
during migration of the ions, has momentarily been an ion, is 
left in a new position, if the proton does not jump back to the 
same H2O molecule from which it came. I myself have worked 
with this proposition, without knowing Kauzmann’s work. There 
is no doubt that migrations of the ions must produce molecular 
turns, during which the dipole moments of the ions are turned 
through 90°. These turns, however, are far from sufficiently 
frequent to explain the dielectric properties of ice (ca. 150 per 
sec. per ice molecule, whereas ca. 106 are required). An even 
more important objection is the following. The dipole moment 
produced by these molecular turns is in the opposite direction 
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to that which is required. This can be shown in the following 
way. The dipole moment produced by migration of the ions in 
an isolated ice block is the vector sum of a series of proton 
jumps, each of 0.78 Å. The dipole moment produced can also 
be considered as the sum of the dipole changes, caused by dis­
placements of the ions, and the dipole changes, caused by turns 
of the H2O molecules. The change of the dipole moment, due 
to displacements of the ions, is 2.76/0.78 times larger than the 
dipole moment corresponding to the proton jumps (the dis­
placement of the ion is 2.76 Å, when the proton jumps 0.78 A). 
Consequently the dipole moment due to turns of molecules must 
be in the opposite direction and numerically 1.98/0.78 times 
larger than the dipole moment corresponding to the proton jumps 
(1.98/2.76 parts of the dipole moment produced by displacements 
of the ions).

Hence it is not possible to use the molecular turns connected 
with the migration of the ions as an explanation for the dielectric 
properties of ice. Only the molecular turns produced at orientation 
fault sites, which are described in part II of this paper, can be used. 

4. The proton jump conductivity of ice (and water).
In the previous section an account is given of how the ions 

H3O+ and HO“ move in ice by means of proton jumps and 
how these movements are connected with molecular turns, which 
produce dipole moments in the direction opposite to the move­
ments and amounting to 1.98/2.76 parts of the dipole moment 
produced by the ion displacements. If an electric current is 
passed through a block of ice, avoiding polarization (electric 
charges) at the two ends, where the current is lead in and out, 
the ion movements in themselves will not give the block a dipole 
moment. On the contrary, it might be expected that the turns of 
the molecules would produce a gradually increasing dipole 
moment in the opposite direction to that of the electric force. 
The molecules are, however, also able to turn at orientation fault 
sites, and since the turns at orientation fault sites are ca. IO4 
times as frequent as the turns at the ions, they are not only able 
to prevent the appearance of this dipole moment, but in addition
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to produce the dipóle moment required by Debye’s theory in 
the direction of the force.

For the hypothesis of the proton jump conductivity of ice 
it is thus of vital importance that the molecular turns produced 
at orientation fault sites are far more frequent than the mole­
cular turns produced at ions.

In water the molecular turns at orientation fault sites are even 
more frequent than in ice (according to the dielectric properties 
ca. 105 to 106 times more frequent). There is therefore very good 
reason to consider the abnormally high conducivity of the H3O+ 
and HO“ ions in water as a result of the ability of these ions 
to move, not only as a unit, but also by means of proton jumps.

5. Ion concentration and proton jumps in ice at lower 
temperatures. Energies of activation.

The specific conductivity of ice (x) decreases on cooling. 
From Johnstone’s determination at—4° and—19° (see p. 42) an 
apparent energy of activation E = 19.6 kcal/gmol is calculated 
by means of the expression E = —R d In x/d (1 /T). Let us try 
to calculate theoretically a value for this energy of activation.

Assuming that the total conductivity is due to proton jumps, 
the conductivity must decrease in the same ratio as the rate of 
proton jumps. The rate of proton jumps decreases partly because 
of the decrease in the ion concentration and partly because 
proton jumps require a certain energy of activation. The decrease 
in the ionisation depends on the heat production during the 
process of “neutralization” H3O++ HO~ —* 2H2O. In water this 
process is accompanied by an evolution of heat of 13.7 kcal/gmol. 
This heat production (disregarding the difference between pro­
duction of heat and of energy) can be separated into two parts: 
the energy, liberated during the actual proton jump, and the 
energy, liberated on account of the electrostatic attraction between 
the ions when they approach each other. The latter part can be 
calculated from the expression e2/ea to 1.4 kcal/gmol, when the 
dielectric constant (e) in water at 0° is taken as 88, and the 
distance (a) between the ions when they touch as 2.76 Å. The 
energy which is released during the proton jump itself from 
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H3O+ to H0— is therefore 13.7 — 1.4 = 12.3 and hence forms 
the greater part. In ice we will assume that the production of 
energy during the proton jump itself is the same as it is in water 
and since the static dielectric constant in ice is of a similar size 
to that in water, we will for the present assume that also that 
part of the energy production, which is due to the electrostatic 
attraction between the ions, has the same size in both ice and 
water. Hence the formation of the ions in ice requires the same 
amount of energy as in water (13.7) and the ion concentration 
in ice should therefore decrease with temperature according to 
the expression:

— R d In c/d(l/T) = 13.7/2 = 6.85. (1)

The energy of activation (Ep) for proton jumps between the 
ions and the H2O molecules can be calculated from the tempera­
ture coefficient for that part of the conductivity of the ions in 
water, which is due to proton jumps. As will be shown later, 
the following energies of activation are thus obtained:

For H3O+ Ep = 2.5 and for HO’ Ep = 4.7.

The fact that the energy of activation is lower for H3O+ than 
for HO’ is of course in agreement with the higher proton jump 
conductivity of H3O + .

Let the number of proton jumps per H2O molecule be n, per, 
H3O+ ion n and per HO- ion n", and let c be the molecular 
concentration of the ions H3O+ and IK) (these concentrations 
must be equal, assuming that the ice lattice contains no other 
ions), then:

n = c (n'+ n")/50.9

(50.9 is the number of H2O molecules in 1000 cm3 of ice).
For the change of c with temperature (1) is valid and for 

changes of n and n" :

— R d in n/d(l/T) = 2.5 and -Ä d Zn n"/d (1/T) = 4.7.

For the variation of n with temperature we obtain:

—Rdlnn/d(llT) = 6.85 + E,

where E — 2.5xn'/(n' + n") + 4.7 X n"¡(n + n").
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At 0o C according to the statement on p. 43 the proton jump 
conductivity in ice of H3O+ is 215 and of HO- 83. n and n" are 
proportional to these figures. Hence we obtain E = 3.1 at 0° C. 
At lower temperatures the ratio n /n" will increase and E will 
decrease gradually towards 2.5.

The apparent energy of activation, corresponding to the 
temperature coefficient of the conductivity of ice, should hence 
be 6.85 + 3.1 = 9.95 near the melting point. This is only half 
of the value calculated from Johnstone’s determinations of the 
conductivity of ice. The reason may be that Johnstone’s deter­
minations are not sufficiently accurate to be used for deter­
mination of temperature coefficient. It is, however, more probable 
that in the calculation of the energy required for separation of 
the ions it has not been permissible to use the high static dielectric 
constant of water (88). If we had used a value 15 times lower 
(5.9, this is the size of the dielectric constant of ice in an alternating 
field, which changes ca. 40,000 times in a second) a release of 21.0 
and not 1.4 kcal/gmol would have been found when the ions 
approached contact. The evolution of heat by the process of 
“neutralization” would have in this case been calculated to 
12.3 + 21.0 = 33.3 and the apparent energy of activation to 
33.3/2 4- 3.1 = 19.75 and thus have been in agreement with John­
stone’s conductivity determinations.

On the other hand, it must not be forgotten that the ion con­
centrations in water and ice are of about the same size, and 
that this is an indication that the heat of “neutralization” in ice 
and w ater should also be expected to be approximately the same.

The use of the static dielectric constant has been shown to be 
permissible in calculations of the forces between the ions in water. 
This is apparent e. g. from Debye and Heckel’s work on the 
coefficients of ion activity7) and from Bjerrum’s calculations on 
the relation between the dissociation constants of poly-acidic 
acids8).

The molecules in ice, however, turn ca. 106 times less fre­
quently than they do in water. Therefore it appears reasonable 
that in ice, not the static dielectric constant, but a dielectric con­
stant corresponding to an alternating field of high frequency, 
has to be used.

Dan. Mat.Fys.Medd. 27, no. 1. 4
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6. Calculation of the energies of activation for the reactions 
H3O+ + H2O->H2O + H3O+ and H2O + HO“ -> HO- + H2O 
from temperature coefficients of proton jump conductivities 

of the ions H3O+ and HO“ in water.
In table 2 the electrical conductivities at infinite dilution ) 

are given for the ions H3O+, K+, HO- and C1“ at temperatures 
from 0° to 100° according to J. Johnstone9).

If it is assumed that the H3O+ ion, in the absence of proton 
jumps, would have the same conductivity as the potassium ion, 
and the HO“ ion the same conductivity as the chloride ion, the 
figures given in table 3 are obtained for that part of the con­
ductivity (/zp) which is due to proton jumps, brom these proton 
jump conductivities energies of activation are calculated by 
means of the usual equation :

E = — R din /u/d (I/T).

These energies of activation are presented in table 4. (In the 
calculation, in place of differentials, differences have been used).

* Johnstone gives 284. An interpolation between the value at the four other tem­
peratures makes 279 more probable.

Table 2.
Molar conductivities at infinite dilution (mJ in water.

t 0° 25° 50° 75° 100°

H3O+........................ 240 350 465 565 644
k+........................... 40.4 74.5 115 159 206
HO-........................ 105 192 279* 360 439
ci-............................ 41.1 75.5 116 160 207

Table 3.
Molar conductivities due to proton jumps (pp).

t 0° 25° 50° 75° 100°

h3o+.......................... 199.6 275.5 350 406 438
HO“........................ 63.9 116.5 163 200 232
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Table 4.
Energies of activation (E) expressed in kcal/gmol, calculated from 

the proton jump conductivities of the ions in mater.

t° c 0-25 25-50 50-75 75-100

h30+.............................. 2.07 1.83 1.33 0.78
HO-............................. 3.85 2.58 1.83 1.53

In the range 0° to 25° the energies of activation for H3O+ are 
ca. 2 and for HO- ca. 4. These values ought not, however, to 
be considered, without reservations, as the energies of activation 
Ep for the proton transitions H3O++ H2O -*• H2O + H3O + and 
HO-+ H2O —*■ H2O + HO~. The energies of activation in the 
table decrease steeply with rising temperature. This fall can be 
explained in the following way: In order that the proton jump 
can take place, an H2O molecule must be orientated towards 
the ion in a so-called hydrogen bond position, i. e. so that a 
positive proton-containing corner in the H3O+ ion is turned to­
wards a negative proton-free corner in an H2O molecule, and a 
negative proton-free corner in the H()~ion turned towards a posi­
tive proton-containing corner in an H2O molecule. This condition 
is always fulfilled for the ions in ice, but on the contrary not 
always in water. With rising temperature the number of favourable 
positions in water will decrease. This will reduce the rise in p, with 
temperature and thus make the calculated E values, given in 
table 4, lower than the true energies of activation Ep for proton 
jumps in a hydrogen bond position.

This effect can be corrected for as follows: Let a be the 
fraction of the protons in the H3O + ions, which are associated 
with an H2O molecule in hydrogen bond position. The following 
equation can be used for the variation of a with temperature:

_a==Q_(°A
RT R6\T ) (2)

Q is here the evolution of heat on association of an H2O 
molecule with the ion in hydrogen bond position, and A is a 
constant, which can be calculated when the value of a is known 
at one temperature, e. g. if we know the temperature 0 at which 

4* 
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a is equal to 0.5. This temperature 0 is substituted for A in 
equation (2). Equation (2) is correct if the value of Q is the 
same whether other H2O molecules are already associated with 
the ion or not, and if the tendency of the ion to associate with 
an H2O molecule is also independent of this.

The rate h of proton jumps H3O+ + H2O H2O + H3O + 
per H3O+ ion may be equated to 3aß, where a is the fraction 
of associated protons defined above and ß is the rate of proton 
jumps per hydrogen bond H3O+—H2O. Hence we obtain:

K-_fídlnh _ P dlna dlnß - » dlna t r
ßd(l/T) Bd(l/T) Pd(l/T) Rd(l/T)+ p

From (2) it can be deduced that It d In a/d (1/T) = Q (1 — a).
If we use this equation we obtain from (3):

= E + Q (1 — a). (4)

By means of (2) and (4) Ep for H3O+ is calculated for a 
series of different pairs of values for Q and 0. Table 5 gives the

Table 5.
Ep values for H3O + , calculated from E values for a series of sets 

of values of Q and 0.

Q 0 0°-25° 25°-50° 50°-75° 75°-100° mean of
7?p (H3O + )

3 200 4.84 4.64 4.20 3.68
3 273 3.75 3.81 3.54 3.16
3 320 3.16 3.23 2.99 2.67
3 400 2.66 2.69 2.30 1.97
4 273 4.39 4.47 4.52 4.21
4 300 3.74 4.06 4.01 3.76
4 320 3.34 3.64 3.62 3.47
4 400 2.54 2.63 2.43 2.24
4.5 273 4.71 5.13 5.13 4.76
4.5 320 3.41 3.84 3.95 3.88
4.5 360 2.79 3.04 3.07 3.17
4.5 400 2.49 2.55 2.46 2.36 2.46
5 273 5.06 5.59 5.56 5.30
5 320 3.47 4.04 4.28 4.32
5 400 2.44 2.53 2.47 2.46
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results of these calculations. Similar calculations are performed 
for HO” and the results are presented in table 6.

Table 6.
Ep values for HO“, calculated from E values for a series of sets 

of values of Q and 0.

y 0 0°-25° 25°-50° 50°-75° 75°-100° mean of
Ep (HO-)

3 200 6.62 5.39 4.70 4.43
3 273 5.53 4.56 4.04 3.91
3 320 4.94 3.98 3.49 3.42
3 400 4.44 3.44 2.80 2.72

4 273 6.17 5.22 5.02 4.96
4 300 5.52 4.81 4.51 4.51
4 320 5.12 4.39 4.12 4.22
4 400 4.32 3.38 2.93 2.99

4.5 273 6.49 5.88 5.63 5.51
4.5 320 5.19 4.59 4.45 4.63
4.5 360 4.57 3.79 3.57 3.92
4.5 400 4.27 3.30 2.96 3.11

5 273 6.84 6.34 6.06 6.05
5 320 5.25 4.79 4.78 5.07 4.97
5 400 4.22 3.28 2.97 3.21

It is not possible, solely by the use of the figures in table 5, 
to find the set of Q and 0 which make the calculated Ep values 
for H3O+ independent of the temperature, or to solve the cor­
responding problem for HO-. The conductivities, on which these 
calculations are based, are too inaccurate for this purpose and 
this is especially true for HO-. We know, however, that the 
energy of the hydrogen bond H2O — H2O in water generally is 
considered to be ca. 4.5 10), and we will therefore use Q values 
near this figure. Considering this and also that the Ep values of 
course should be as uniform as possible in all temperature 
ranges, it appears reasonable to choose

for H3O+ Q = 4.5 and 6 = 400° K
for HO- Q = 5 and 6 = 320° K.
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This choice leads to the following Ep values :

for H3O+ Ep = 2.5; for HO- Ep = 4.7.

For H3O+ in water, a (the fraction of the protons of the ion 
which have an H2O molecule in hydrogen bond position) is 0.95 
at 0° C and 0.61 at 100° C. For HO-, a (the fraction of the 
proton-free corners of the ion which have an H2() molecule in 
hydrogen bond position) is 0.77 at 0° C and 0.44 at 100° C. For 
comparison it should be stated that Bernal and Fowler11) have 
roughly estimated, from the heat of fusion of ice and from the 
heat capacity of water, that in water at 0° 0.88 of the hydrogen 
bonds between the H2O molecules are intact and at 100°, 0.75.

Summary.

1. Ice contains in its lattice H3()+ and HO- ions in equal 
concentrations. They are formed, without displacements of oxygen 
atoms, by proton jumps between two adjacent H2() molecules: 
H2O + H2O -* H3O+T HO-, and they are separated similarly, 
without displacements of oxygen atoms, by proton jumps between 
the ions and H2O molecules: H3O+4- H2O -► H2O + H3O+ and 
H2O + HO- -> HO-+ H2O. The ions migrate in the ice by 
means of proton jumps, until oppositely charged ions meet again 
and have the possibility of recombining.

2. The conductivity of ice may be assumed to be due ex­
clusively to migration of H3O+ and HO- ions by means of proton 
jumps. The molecular conductivity of these ions in ice can be 
calculated from the proton jump conductivity of the ions in water 
to be: 215 for H3O+ and 83 for HO- at 0° C. The molecular con­
centration of the ions in ice is calculated from the specific con­
ductivity of ice to 1.34 X 10— 8, corresponding to the transforma­
tion of 0.27 X 1()—9 parts of the molecules to H3O+ ions, and of 
an equal fraction of the molecules to HO- ions.

3. The rate of proton jumps in ice can be calculated, by 
means of Einstein’s equation for Brownian movements, to be:

per H2O molecule................................................................ 152
per H3O+ ion (type H3O+ + H2O -> H2O + H3O+) . 4.15 X 1011 
per HO- ion (type H2O + HO ~* HO-+ H2O) 1.6 X 1011 

all per second at 0° C.
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4. The energies of activation for the proton jumps at the ions 
are calculated, from the temperature coefficient for the proton 
jump conductivity of the ions in water to be:

for H3O+ 2.5 kcal/gmol, for HO- 4.7 kcal/gmol.

Using these values it is possible to calculate the temperature 
coefficient for the rate of proton jumps at the ions. The tempera­
ture coefficient for the molecular conductivity of the ions is the 
same as for the rate of proton jumps.

The fall in the ion concentration with temperature is de­
pendent on the evolution of heat by the process of neutralization 
H3O++ HO' —> 2 H2O. This must be of a similar size in ice 
and in water (13.7), if it is permissible to use the static dielectric 
constant for the electrostatic forces between the ions in ice. A 
heat of neutralization of this order seems probable, as the ionization 
in ice is not very different from that in water. If, on account of 
the lower mobility of the dipoles in ice, a lower dielectric con­
stant has to be used, the heat of neutralization in ice will be 
higher than that in water. If, e. g., a dielectric constant of 5.9 
is assumed (corresponding to an alternating field frequency of 
40 kc) the value is calculated to 33.3 kcal/gmol.

From Johnstone’s not very reliable determinations of the 
conductivity of ice, an apparent energy of activation of 19.6 
kcal/gmol is calculated. The same energy of activation is cal­
culated from the energies of activation for the proton jumps and 
from the heat of neutralization to only 9.95, when the heat of 
neutralization is taken as 13.7. On the other hand, a heat of 
neutralization of 33.3 gives an energy of activation of 19.75, 
which is in agreement with Johnstone’s figure.

5. The migration of the ions in ice is connected with turns 
of the II2O molecules. If the ions migrate under the influence of 
an electric force, these turns will produce a dipole moment in 
the opposite direction to that of the force. The molecular turns 
produced by migration of the ions can not therefore be those 
required by Debye’s theory for the dielectric properties of ice. 
They are also too infrequent to account for these properties.

6. For the justification of assuming the conductivity of ice to 
be the result of proton jumps in ice, it is of decisive importance 
that the molecular turns at orientation fault sites are between 
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IO3 and 104 times as frequent as molecular turns at the ions. 
This means that they are able to neutralize the dipole moment 
produced by the migration of the ions in an electrical field.

7. For the justification of assuming the abnormally high con­
ductivity of the H3O+ and HO- ions in water to be the result 
of proton jumps between the ions and the water molecules, it 
is of decisive importance that the molecular turns, connected 
with these proton jumps, only amount to a very small fraction 
of all the molecular turns in water.
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1. Introduction.

he /3-decay of a nucleus will often be accompanied by exci-
1 tation or ionization processes in the atomic core. Partly, the 

^-particle may collide with an atomic electron during its passage 
through the atom, partly the sudden change of the nuclear charge 
from Z to Z+ 1 will cause a rearrangement of the electrons as 
a consequence of which the atom may be excited or ionized. The 
importance of this latter effect is evident in case of positon emis­
sion, but also in -decay there is an appreciable probability for 
secondary ionization processes.

The charge of the recoil atom may thus exceed one unit and 
the effect is therefore of importance for many types of measure­
ments of the energy and momentum spectrum of the recoil atoms. 
Considerable interest attaches to these measurements which may 
yield detailed information regarding the mechanism of ß-decay 
( Kofoed-H axsex 1951).

'fhe ionization accompanying ß-decay has been investigated 
theoretically by Feinberg (1941) and Migdal (1941). Feinberg 
has shown that the dominating effect is due to the “shaking” of 
the atomic core due to the change of nuclear charge. This result 
follows also from a simple qualitative consideration: The time 
taken for a relativistic ^-particle to leave a shell of electrons bound 
by a charge Ze is / h2jZme2c. If now this time is short compared 
with the period of revolution for these electrons 1/v h3Z2//ne4,
that is, if vt Za is small compared with unity, the change in 
the potential for the atomic electrons takes place so rapidly that 
the wave function after the /^-process is almost equal to the original 
wave function (^). The relative change Aip/y) in the wave function 
during the emission of the /^-electron will just be of the order 
vt. The calculation of the resulting excitation and ionization 
processes thus amounts to the expansion of the ground state 

1*
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wave function of the original atom on the stationary state wave 
functions of the new atom.

In the case of H transforming into He, this expansion can 
readily be performed, and one finds an ionization probability of 
2.5 °/(). For heavier atoms the calculation becomes rather compli­
cated due to the complex character of the wave functions. Estimates 
based on approximate wave functions were obtained by Migdal, 
but they only apply to the ionization probabilité of the K, L 
and M electrons in heavy atoms.

We have attempted a more detailed calculation in the case of 
He transforming into Li. The ß-decay of Hefi is of particular 
interest for the /Lrecoil studies (Allen 1949).

The ground state of He has angular momentum 0 and positive 
parity. The only states of Li H of this character, which lie below 
the ionization limit, are the states usually designated as Is ns ASp. 
The notation refers to the approximation in which the wave 
equation separates in the coordinates of the two electrons. All 
other 0 -f- states, such as 2s ns (n > 2) or 2p up etc., which would 
be bound states if the interaction between the electrons could be 
replaced by a central potential, lie in the continuum. Thev are 
therefore virtual states which, on account of the interaction, 
decay by auto-ionization (Auger effect).

The ionization probability may thus be calculated by sub­
tracting from unity the probabilities for transition to the bound 
states (Is ns). Since this difference is relatively small it is neces­
sary to use rather accurate wave functions for the bound states. 
Still, this method is advantageous because it is difficult to obtain 
adequate wave functions for the continuous spectrum and since 
calculations with continuum wave functions are very laborious.

Accurate wave functions for the ground state of He and Li II 
have been given by H veleras. In section 2, we derive wave functions 
for the 1 .s- ns (n > 2) states of Li II for w hich sufficients accurate 
expressions have not previously been given. The expansion coef­
ficients are evaluated in section 3, and the results obtained are 
compared in section 4 with approximate direct estimates of the 
transition to free states, including the virtual states. In section 5 
we shall consider various minor effects neglected in previous 
sections. A few remarks will also be made concerning the ioniza­
tion by /Ldecav in heavier atoms.
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2. Wave functions for bound states.
In order lo calculate the probabilities for transitions to bound 

states of Li we need wave functions for the ground state of 
He(y»He) and f°r the lsnsLSp states of Li 11 (ipt s ns).

Ground state of He.

For Ÿ'iie we have used the very exact wave function
ytfe = 1-388 <-1818s(l + .3534« + .128212 - .1007s+.0331 s2 — .0317 u2).

In calculations where such great accuracy is not necessary 
we have used the wave functions

ip(ÿc = 1.34 e~182s (1 + .290 u + .132 f2) and 

= 1.683/ti e_1,iös.

Here as in the following we have used atomic units (Bethe 
1 933).

The variables u, s, and t are defined as follows

where rx and r2 are the radii vectors for the two electrons. The 
wave functions and V’He have, with the exception of the normal­
izing factor, been calculated by Hyllerås (1929), and are cited by 
Betiie in Handbuch der Physik (p. 358). In our quotation, they are 
normalized for the whole configuration space of the two electrons 
according to the formula

Ground state of LiH.

For y?ls]s we have used the very exact wave function given by 
11 veleras (1930a)

y>]sl,. = 6.219 e—3s(l + .1 1475s + .37594 u + .18468 t2 + 0.1412s2

.17939zz2 + .05666zzs — .05506f2zz + .02918 u3) 
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which is normalized according to the above formula. Betiie’s 
quotation in Handbuch der Physik (p. 362) seems to lack a factor 
x/2 on the coordinate dependent terms in the paranthesis.

Is 2s lS0 state of Li II.

I s 3s l50 state of Li IL

For this state we have used the following Hartree approxi­
mation. The motion of the inner electron is considered to be 
unperturbed, and the resultant potential for the second electron 
is found. Then, using the experimentally known term value, we 
get the following differential equation for the radial w ave function 
Cyi) of the outer s-electron,

A sufficiently good approximation for the wave function of this 
state appears not to have been given previously. We have carried 
out a calculation according to the scheme used by Hylle rås ( 1930 b ) 
for the calculation of the 1s 2s state wave function of He. Since 
the interaction between the electrons is relatively less important 
for Lili than for He, we can expect to get a rather good approxi­
mation to the wave function by means of the variational function

7/' = e_As [(yq 4- a2 s') cosh ß t 4- a3 t sinh ß t],

where k, ß, t/1, a2 and a3 are varied.
Bather long and tedious calculations, quite analogous to those 

performed by Hylle rås, lead to the normalized wave function 

y>is2s = <’ ■2 04s [(1.334s —2.172) cosh 1.000 / + 1.114 sinh 1.000/].

The ionization energy corresponding to this wave function is

Itheor = 117900 cm 1

while the energy found experimentally is

Iexp = 118700 cm”1

(extrapolated value given by Werxer 1927 ; cf. also Moore 1949). 
The difference amounts to .7 °/0.
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Figl. Radial wave functions for the outer electron in the Is 3s state (£/) 
and the Is 4s state (£2) compared with the Coulomb wave function (rqy,=~ (r)) 

for the 3 s state corresponding to complete screening (Z = 2).

d2 Ij/t/r2 + [4/r + 2e—(,r(l/r + 3) — .46] = 0,

where = ryj1.
This differential equation is solved numerically for r < 1.2. 

For greater values of r, where the second term in the paranthesis is 
negligible, the solution which tends to 0 as /• -* œ is a continent 
hypergeometric function with the asymptotic expansion 

£i(r) = — (1 —2.874/i/x 4 1.257/t/[ ; .0101/y3 —.0007/yJ),

where yx — .678r. This solution turns out to fit rather well with 
the numerical solution at / = 1.2, as shown in fig. 1. The difference 
between logarithmic derivatives is about 10 per cent.

As a total normalized wave function for the 1 s 3s state we have 
used

Vis as = -6û9 (e~3ra (ri)//’! 4- e 1 (r2)A’2) •

In order to obtain an estimate of the accuracy of this wave 
function we have calculated the scalar product to the two func­
tions y>ïs 2 s. and y)l s 9s which were derived by quite different methods. 
One finds

\\ V’lS 2.S V’ls 35 T1<l= — 054.
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I 5 4 s 1 <S'O state of Li II.

L'or this state we use a similar treatment. The wave function 
for the outer electron is supposed to be a solution of the equation 

d2£2/dr2 + [4/r + 2e~ftr(l/r + 3) —.26R2 = 0,

where £2 — rV'2-
For r < 1.5 the solution is almost identical to (cf. Betiie, 

loc. cit., p. 288). For r > 1.5 we use the asymptotic expansion 

f,(r)= .83e-*^“O- 5.74/y2 + 8.09/yf - 2.41/y| - .021/y‘),

where y2 = .509r. The factor .83 is chosen such as to make 
£2(r) coincide with £x (r) for r small (fig. 1).

The normalized wave function for the 1 s 4s state is then 

tpisAs = .421 (e-3r^2(r1)/r14-L“3r^2(r2)/r2).

The wave functions for the higher s states will, in nearly the 
whole region where y>He # 0, be similar to y’ls4ó-. The normalizing 
factor will be approximately proportional to where ncff 
is the effective quantum number for the outer electron.

3. Expansion coefficients for transitions to bound states.

We denote the probability for transition to the rs ns state by 

(r . n) = I a (r . n)|2 = | y>rsns drA dr2 |2 

and from the wave functions given in the previous section we 
obtain the following results:

u(l.l) = g V>1s Is <^1^2 = • « 1 «4

(1.1) = .670

0(1.2) = Y5 ,s. 2 s <Iti dr2 = -408

P(1.2) = .166

o (1.3) = ip} s 3,s dr, dr2 = . 1 63

P(1.3) = .027

o(1.4) = ^ yx ,s 4,s drx dr2 = .088

P(1.4) = .008.
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In view of the inaccuracy of V’isus an(l Vhsis we have, in the 
last two cases, used the less accurate wave function y>He- Prob­
ably the most uncertain of the values quoted above are a (1.2) 
and a (1.3). To illustrate the strong dependence of these quant­
ities on the wave functions, we quote two results for the ex­
pansion coefficients, obtained by means of less accurate helium 
wave functions

«* (1.2) = ÿv’iie y>ls2s drl (It2 = .399

P* (1.2) = .159

«* (1-3) = JJ y)He ipi s 3,s dr! (It2 = .142

P: (1.3) = .020.

It is to be emphasized that the difference between these results 
and the values given above provides no direct indication of the 
accuracy of the values since the essential sources of error probably 
are the lithium wave functions. The results exhibit a tendency of 
P(1 ,n) (n > 2) to increase with increasing accuracy of the wave 
functions, a tendency which was found to be very characteristic 
of the whole calculation. It thus appears probable that the use 
of more accurate wave functions would lead to still higher 
values for P(l.n).

According to section 2, we may assume the expansion coeffi­
cients of y’}Je on the higher .$ states to be proportional to n~a^2, 
that is

P(1.5) + P(1.6) +............ =

(4 — .075)3 P(1.4) [1/(5 — .075)3 + 1/(6 — .075)3 +... j = .012 

since ncfl equals n .075.
file total probability for transitions to bound states is found 

to be
ac

Abound = ZP(> n) =
71 = 1

flic uncertainly of P],OUIM] has roughly been estimated on the 
basis of the scalar product of y\s2s and ^ls3s (p.7) to be of the 
order of one to two per cent.
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According to the result lor Pbouna the probability for transi­
tions to free states should be .117. However, in view of the 
indication that the use of more accurate wave functions would 
lead to a slightly larger value of Pbound’ an indication which is 
supported by the estimates in the next section, we give as final 
estimate of the ionization probability

77ion = (10.5 i 1.5) per cent.

I bis rather large value for 7Jioil may be of significance in 
recoil experiments. The corrections to be made to the results 
obtained by Allen (1949) in such experiments may easily 
be evaluated. They are found to be almost of the same order 
of magnitude as the difference between the curves for the different 
coupling cases. Still, with the present experimental uncertainties, 
the corrections hardly alter the conclusions which may be drawn 
from the measurements.

An experimental test of the value for Pion may be possible 
by measurements of the motion of recoil atoms in combined 
electric and magnetic fields ( Koioed-1 1 ansen 1951). Measure­
ments of the photons emitted from excited states of Li II might 
also give a valuable test of the theoretical calculations.

4. Transitions to free states.

In a discussion of free states we may use two different ap­
proaches.

I) 'fhe interaction between the electrons is represented by a 
screening of the nuclear potential; we thus write 1 /r12 = V) (ri) 
+ V2(/’2) + IVand neglect the potential IV. In this approximation the 
states with energy greater than the ionization potential are of three 
different types: 1) States, where both electrons are free (ELE2),
2) states, where one electron is bound the other free (1 sE, 2sE...'),
3) stales, where both electrons are “bound' (2s 2s, 2s 3s, . . .). 
States of the last type are virtual; they decay by Auger effect 
(auto-ionization) into states of the second type.

The Auger transition is caused by the neglected potential IV, 
and the decay time may be calculated by considering this potential 
as a perturbation (Wentzel 1927).
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r2 times wave function 
the inner electron

¡\ times wave function 
the outer electron

11) In a more rigorous treatment only states of the first two 
types in I) exist. For nearly all values of E we may in good 
approximation separate the wave equation in the two electrons 
as in I). For energy values close to the energy of the virtual states 
this approximation however breaks down and a sort of resonance 
phenomenon occurs. As illustrated in fig. 2, the wave function for 
the stationary states may be looked upon as a combination of a 
1 sE state with a 2s 2s state. This figure should be understood in 
the sense that for great distances of the outer electron the total 
wave function is the symmetrized product of the two full-drawn 
curves, that is of a Coulomb wave function for the continuous 
spectrum and a Coulomb wave function for the Is state approx­
imately. For smaller distances the amplitude of the total wave 
function grows up rapidly, and its dependence on both electron­
coordinates is quite changed. For small values of and r2 the 
wave function may be approximated by the 2s 2s wave function 
(dotted curves).

From the wave function described in this way, the decay time 
of the 2s 2 s state may be calculated as the outgoing probability 
current.

An accurate computation of the expansion coefficients on 
the free states of Li 11 would be highly complicated. We shall 
attempt an approximate calculation in order to estimate the order 
of magnitude of the ionization probability and its distribution on 
the various types of free stales.

For energies different from those of the virtual states the 
wave function for the free states may be approximated by the 
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product of Is, 2s... Coulomb wave functions (with Z = 3) and 
Coulomb wave functions (with Z = 2) for the continuous spectrum, 
fhe total transition probability to these states is given by

•'0 • 0 •’()

Since the widths of the virtual slates are small (< 100 cm- ) the 
contribution to Pcont from the energy regions of the virtual states 
is negligible.

In the neighbourhood of the energies of the virtual states, the 
amplitude of the wave functions for small r is much larger than 
the amplitude of simple Coulomb wave functions used above. 
An approximate estimate of the transition probability for this 
energy region may be obtained by using the normalized wave 
functions for the virtual states. If we write

PVirt = P(2.2) + P(2.3) + P(2.3) + . . . + P (3.3)

the sum
P — P -4_ p .■* Ircc 1 cont ’ 1 virt

will give the total transition probability to free states.
The value of Pcont may be calculated by noting that

^n.s (0 represents the normalized Coulomb wave function for 
electron 1 in the ns slate with Z = in. The factor 1/2 comes from 
the symmetrization.

In view' of the approximate character of the free state wave 
functions used, we have calculated the transition probability by 
using yJIe = and found

PC()nt = -015.
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The contribution to this result from the EY E2 states is negligible 
(< .001).

The evaluation of Pvirl can only be made with rather great 
uncertainty. Several authors have derived approximate wave 
functions for virtual states of He I (Wu 1934, Wilson 1935). For 
Li II apparently no calculations exist. Since, however, it has not 
been possible with the wave functions so far constructed to account 
adequately for the properties of virtual states in light atoms 
(Wu 1944, 1950), we shall here only attempt order of magnitude 
estimates based on simple Coulomb wave functions.

If we assume for the wave function of the 2s 2s state

Wilis = tâsWtâsC2)

the most appropriate value of Z is expected to lie in the interval 
2.7 < Z <3. The corresponding limit for P(2.2) is .011 < 
P (2.2) < .03. In the same approximation we get a maximum value 
for P(2.3) of .007 and for P(3.3) of .0002.

Altogether we find

< .04 and

There is a considerable discrepancy between this estimate 
and the result Pbound = .<383 obtained in section 3, since the sum 
of Pbound an(l Pfree should equal unity. This discrepancy may 
partly be due to the uncertainty in Pbound» l)ut f°r the larger part 
must be ascribed to the very uncertain determination of Pfrcc.

I he estimates made in this section serve primarily to indicate 
the distribution on the free state transitions and to show the 
importance of transitions to virtual states. From the very small 
probability for double ionization (E\ E2 stales) we may further 
conclude that the average charge on the lithium recoil is

<z> = 1.105 ± -<)15,

provided we use the value for Pion quoted on p. 10.
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5. Discussion.

In the above treatment a number of minor effects have been 
neglected. Although, as we shall see, they are all negligible in 
case of He, some may become significant for heavier atoms.

I) As mentioned in section 1, the /^-electron will have a chance, 
by direct interaction with the atomic electrons, to knock one of 
these out of the atom. The probability for this process (P(lc) as 
compared with the probability for ejection of this electron due 
to the effect of “shaking” (Ps), ^as been estimated by Feixberg 
(1941).

For a relativistic /i-particle he finds

P(ic/Ps I/me2 (Zee)2,

where / is the ionization energy of the electron and Z is the 
effective nuclear charge.

In the case of the lie6 decay the contribution of direct collision 
thus amounts to

Pdc .0001,

which obviously can be neglected. In heavier atoms Pdc and 
may become of the same order of magnitude only for electrons 
in the inner shells. As Ps is small for these electrons (Migdal 1941 ) 
the contribution of Pdl. to the total ionization probability will al­
ways be negligible. Since, however, the removal of one of the 
inner electrons will give rise to a cascade of Auger electrons (cf. 
section III) the direct collision may become important for that 
small fraction of the recoil atoms which are highly ionized.

II) Our results have to be corrected for the recoil motion of 
the nucleus, since the expansion of y[Ie on lithium wave func­
tions must be carried out using wave functions referring to a 
lithium atom in motion.

The velocity (v) of the lithium recoil, corresponding to the 
maximum recoil energy 1500 eV, is of the order of po/20, 
where i>0 = Zac (the velocity of the atomic electrons). In this 
case we would expect the correction for the transition probabilities 
to be of the order (i)/v0)2 .003.

We have also carried out a more exact calculation using lithium 
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wave functions corresponding to a moving atom and obtained 
substantially the same result.

The result shows that in general we may neglect the effect of 
the recoil motion when we have to do with free atoms. For atoms 
bound in molecules this effect will be of great importance, since 
the molecule may be disrupted.

Ill) In the calculations we have made the assumption that 
the lifetime of the virtual states against Auger effect (raug) is small 
compared with the radiation lifetime (rrad). According to Wentzel 
(1927), the ratio of the two lifetimes is of the order rauo./Trad 
10 G Z4 and thus very small for lithium. All states in which both 
electrons are excited therefore practically always lead to ioniza­
tion.

According to the estimates in section 4 the Auger effect is 
actually responsible for the main part of the ionization. For heavier 
atoms we would expect the Auger effect to play a similar role. In 
earlier papers on the ionization of atoms by ß-decay, the Auger 
effect has not been taken into account (Feinberg 1941, Migdal 
1941). Migdal thus calculates the ionization probability due to the 
“shaking” effect by expanding the wave functions for the original 
atom only on the wave functions for the continuous spectrum of 
the resulting atom.

If we take into account the Auger effect, the emission of an 
electron, from the Æ-shell say, would, as long as the condition 
Taug/Trad < 1 is fulfilled, give rise to a shower of Auger electrons, 
which would leave the atom several times ionized. (This would 
also be the case if the /¿-electron were only excited into some 
allowed bound state). As Z increases the Auger effect will be less 
probable, but only for the inner shells, where the screening is 
small.

For the most loosely bound electrons the situation is very similar 
to the case of He-> Li, and one has to take into account that 
only a small part of the ionization is due to direct transition to the 
continuous spectrum.

We have made some rough estimates on the average charge of 
heavier recoil atoms, using the results of Migdal and correcting 
them for the effects mentioned above. It appears that the average 
extra charge of the recoil from a /^-process will increase with the 
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nuclear charge Z, so that for heavy atoms it may be quite con­
siderable (of the order 0.5—1).

I wish to express my sincere thanks to Mr. Aage Boiir for 
suggesting this problem and for many helpful discussions. My 
thanks are further due Professor Niels Bonn for his continuous 
interest in mv work.

Institute for Theoretical Physics, 
University of Copenhagen, 

Denmark'.
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("''omet 1899 I belongs to the group of comets for which a 
j definitive calculation gives a hyperbolic orbit and therefore 
is fit to be used as basis of an investigation of the original orbit 

before the comet entered the region of the Sun and the major 
planets. The following elements have been computed by Merlield 
from 580 observations from March 4 to August 10, 1899 (159 
days), all perturbations being taken into account (Astronomische 
Nachrichten 3748).

7’
ro
£)

i
7 
e

From the values of c/ and e we compute the reciprocal value 
of the semi-major axis and its mean error:—

0.0010720 ± 0.0000184.
a

The orbit does not quite fulfil Elis Strömgren’s requirement, 
not having a period of observations of at least 6 months. As the 
number of observations, however, is large and as moreover an­
other computation by Wedemeyer has given practically the same 
elements, I have all the same carried out a computation of the 
perturbed orbit in the years before the lime of perihelion.

As the distance of perihelion is small, we have to start the 
computation by Encke’s method. If we take all perturbations 
into account we get the following rectangular, ecliptical pertur­
bations in units of the 8th decimal referred to the equinox of 
1900.0:—

Osculation 1899, March 12

1899, April 12.978010 (i.M.T.

1900.0
8°41'46"48

24 59 59.93
146 15 30.29

0.32657237
1.00035029

0.000001 02 IA x „ , , , ; Probable errors. 
± 0.00000404 J

1*
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G. M. T. Ç >1

1899 Mar. 30. . . . 32 0 + 18
20.... 7 0 4
10. . . . 1 0 1

Feb. 28. . . . 15 5 15
18.... 54 31 58
8. . . . 1 23 87 1 35

Jan. 29 ... . 228 182 246
19.... 367 322 389
9. . . . 537 518 563

1 898 Dec. 30 .... 730 7 78 769
20.... 941 1111 1012

Nov. 30.... 137 7 2022 1613
10.... 1848 3299 2400

Oct. 21.... 2413 4971 3414
1 . . . . 3112 7061 4707

Sep. 11.... 3968 9596 6340
Aug. 22... . 4983 12616 8388

2. . . . 6142 16181 10940
July 13.... 7431 20374 14106
June 23. . . . + 8832 25296 + 18018

On July 13, 1898, the comet had a distance from the Sun 
sufficient for the direct integration of tin1 co-ordinates. From the 
elements we compute the unperturbed co-ordinates and velo­
cities :—

,r0 = 3.9804483

;/o = + 0.734 1 700

= — 1.5081124

+ 0.01 (»24977

+ 0.05420179

0.22085216

From the scheme of perturbations we get

0.00001342I = + 0.0000743
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ri = — 0.0002037 20 -= 4-0.00004540‘ dt
(i r

£ = + 0.0001411 20—-- = —0.00003515

The additions give the perturbed co-ordinates and velocities:—

<r = _ 3.9803740 20 dx
dt

+ 0.22683874

y = 4- 0.7339063 20 dy 
dt

4- 0.01629517

- = _ 1.5679713 20 dz
dt

4- 0.05416664

These values lead to the following perturbed co-ordinates:—

G. M. T. .r U

1898 July 13.... - 3.9803740 + 0.7339663 1.5679713
June 23.... 4.2044239 0.7171655 1.6210429

3. . . . 4.4232304 0.6994595 1.6720819
May 14. . . . 4.6372405 0.6809836 1.7212956
Apr. 24.. . . 4.8468382 0.6618484 1.7688573

4. . . . 5.0523545 0.6421448 1.8149146
Mar. 15.... 5.2540889 0.6219487 1.8595938
Feb. 23.... 5.4522899 0.6013243 1.9030045

3. . . . 5.6471875 0.5803266 1.9452424
Jan. 14.... 5.8389844 0.5590028 1.9863921

1897 Dec. 25.... 6.0278616 0.5373940 2.0265296
5. . . . 6.2139831 0.5155363 2.0657228

Oct. 26... . 6.5785402 0.4711939 2.1415169
Sep. 16.... 6.9336942 0.4261793 2.2142024
Aug. 7 . . . . 7.2803209 0.3806469 2.2841321
June 28.. . . 7.6191655 0.3347153 2.3515993
May 19.... 7.9508669 0.2884762 2.4168488
Apr. 9. . . . 8.2759793 0.2420035 2.4800880
Feb. 28. . . . 8.5949862 0.1953550 2.5414930
Jan. 19.. . . 8.9083123 0.1485781 2.6012166

1896 Dec. 10.... - 9.2163332 + 0.1017119 - 2.6593910
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G. M. T. ■i- y z

1 896 Od. 31 ... . - 9.5193835 + 0.0547878 - 2.7161315
Sej). 21.... 9.81 77625 + 0.0078325 2.7715408
Aug. 12.... 10.1 1 17395 0.0391322 2.8257091
July 3. . . . 10.4015580 0.0860880 2.87871 73
May 24. . . . 10.6874388 0.1330196 2.9306380
Apr. 14. . . . 10.9695831 0.1799144 2.9815361
Mar. 5. . . . 1 1.2481749 0.2267614 3.031471 1

1 895 Dec. 16. . . . 1 1.7953637 0.3202778 3.1286603
Sep. 27 ... . 12.3302033 0.4135133 3.2225805
July 9. . . . 12.8537214 0.5064280 3.3135462
Apr. 20. . . . 13.3668048 0.5989955 3.4018256
Jan. 30. . . . 13.8702286 0.691 1966 3.4876483

1894 Nov. 11.... 14.3646750 0.7830189 3.5712130
Aug. 23. . . . 14.8507477 0.8744537 3.6526935
.1 line 4. . . . 15.3289852 0.9654958 3.7322420
Mar. 16.... 15,7998699 1.0561418 3.8099939

1 893 Dee. 26.... 16.2638365 1.1463891 3.8860687
Oct. 7 . . . . 16.7212784 1.2362363 3.9605741
July 19.... 17.1725529 1.3256820 4.0336066
Apr. 30.... 17.6179854 1.4148261 4.1052531

1 892 Nov. 21 ... . 18.492489 1.591596 4.244696
June 14.... 19.346884 1.766834 4.379456
Jan. 6. . . . 20.182939 1.940422 4.509993

1891 July 30 .... 21.002159 2.1 12340 4.636698
Feb. 20. . . . 21.805827 2.282577 4.759908

1 890 Sep. 13.... 22.595045 2.451126 4.879910
Apr. 6. . . . 23,370768 2.61 7996 4.996957

1 889 Oct. 28.... 24.133827 2.783206 5.1 11272
May 21.... 24.884957 2.946793 5.223048

1888 Dec. 12.... 25.624805 3.108802 5.332460
July 5... . 26.353957 3.269292 5.439662
Jan. 27 .... 27.072941 3.428330 5.544792

1887 Aug. 20. . . . 27.782241 3.585990 5.647975
Mar. 13.... 28.482303 3.742348 5.749324

1886 Oct. 4. . . . - 29.1 73540 3.897486 - 5.848941
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G. M. T. .r U z

1886 Apr. 27 ... . - 29.856341 - 4.051488 -5.946919
1885 Nov. 18.... 30.531069 4.204437 6.043342

.June 11.... 31.198073 4.356416 6.138289
Jan. 2. . . . 31.857683 4.507503 6.231829

1884 July 26 ... . 32.510216 4.657781 6.324029
Feb. 17.... 33.155984 4.807318 6.414948

1883 Sep. 10.... 33.795284 4.956179 6.504643
Apr. 3. . . . 34.428409 5.104419 6.593163

1882 Oet. 25. . . . 35.055646 5.252079 6.680556
May 18.... 35.677272 5.399183 6.766867

1881 Dee. 9.... 36.293551 5.545740 6.852136
.July 2.... 36.904735 5.691738 6.936401
Jan. 23.... 37.51 1055 5.837145 7.019699

1880 Aug. 16.... 38.1 12718 5.981919 7.102065
Mar. 9.... 38.709904 6.126002 7.183530

1879 Oet. 1 . . . . 39.302761 6.269335 7.264126
Apr. 24. . . . 39.891415 6.411861 7.343884

1878 Nov. 15.... 40.475960 6.553532 7.422832
June 8.... 41.056474 6.694311 7.500997

1 877 Dee. 30 .... 41.633020 6.834176 7.578406
July 23.... 42.205647 6.973122 7.655083
Feb. 13.... 42.774405 7.1 11148 7.731053

1876 Sep. 6.... 43.339337 7.248303 7.806338
Mar. 30.... 43.900489 7.384592 7.880959

1875 Oet. 22. . . . 44.457911 7.520064 7.954936
May 15.... 45.011650 7.654769 8.028288

1874 Dee. 6. . . . 45.561767 7.788758 8.101034
June 29 46 1O83‘>3 7 922090 8 173190
Jan. 20... . 46.651385 8.054823 8.244773

1873 Aug. 13. . . . 47.191028 8.187019 8.315796
Mar. 6. . . . 47.727332 8.318737 8.386275

1872 Sep. 27 .... 48.260387 8.450037 8.456223
Apr. 20... . 48.790289 8.580972 8.525653

1871 Nov. 12.... 49.317141 8.711593 8.594575
J une 5 . ... 49.841056 8.841938 8.663002



8 Nr. 3

On November 12, 1871, when the comet had a distance of
50.8 units from the Sun, it was so remote from the planets that 
the perturbations had only insignificant influence on the move-

the comet.
dx dij 
dt ’ dt ’ 

reductions to the centre of gravity of the Sun and the 8 
drç®
dt ’

The addition gives 
   dx dij dz 

,r’ U’ Z’ dt ’ dl ’ dl -

ment of
Now we compute the following velocity components 

and
(l. . . £ . d£® drç® dC®

major planets £@, r]&, Ç@, <{[ , , (¡[ .

the resulting centre co-ordinates and velocities

.r = 49.31714 ?/ 8.71 159 z = — 8.59458
£© = + U *7® 320 c® = 1
X - 49.31 700 ÿ = 8.71479 * = - 8.59459

dx dij dz
dt = + 0.00328353

dt
0.00081548 ~dt 0.00042916

d £® 566 dij® 173 d Ç® 10; - = + -------= —
dt dt dt
dx dû dz
dt ~ : + 0.00328919 — _i_ 

dt
0.00081 721

dl “
0.00042906

noin these we find:—-

r = |/ir2 + ÿ2 + ? = 50.81320

T2 = +
/dc\2- = 0.00001167070.

\ d/ / 1 \dt) r \d/ /

If these values are substituted in the equation of conservation
of energy :—

Vr-2 2 1
+ m) r 71

in which :—
F(1 + in) = 0.0002963093,

we find:—
1
« -0.0000270 + 0.0000184

Thus the computation has given the result that the original 
orbit was hyperbolic, though only in a slight degree.
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The result of the investigations up to now is that in 22 out 
of 23 cases the orbits have changed in a hyperbolic direction 
during the time when the comets moved from far off to the region 
of perihelion. Only in 3 cases the computations have shown an 
original hyperbolic orbit, but two of the results must be con­
sidered inconclusive as all perturbations had not been taken into 

account. The third case is comet 1899 1, where the original - is 
negative, and numerically larger than the mean error.

In fact we have here the first example of a comet for which 
all perturbations have been taken into account and which all 
the same shows an originally hyperbolic orbit. However, since 

a change in - equal to 1.5 times the computed mean error would 

make the orbit elliptical, it cannot be said that an originally 
hyperbolic orbit has been established.

Indleveret til selskabet den 21. september 1951, 
Færdig fra trykkeriet den 10. marts 1952.
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►

§ 1. Introduction.1

The aim of lhe present paper is to give a contribution to the 
study of the connection between the so-called summability 
function ip (<r) and the order function [¿(a) of an ordinary Dirich- 

00

let series /'(s) = , ann \ Before stating the results of the paper
Il = 1

we shall recall the definitions of these functions and some known 
theorems.

Let f(s) = y ann_s be an ordinary Dirichlet series which is 
neither everywhere divergent nor everywhere convergent. Let for 
every integer r>0 the number År denote lhe abscissa of summa­
bility of the rth order, in particular Ao the abscissa of convergence. 
Then, as shown by the author ([2], and [3], pp.99—104),

(1) 0<2r-2r + ]<l and Ar-Ar + 1 ¿ar+1-2r + 2 (r = 0,1,2,-• •)• 

When we follow M. Riesz and consider summability of arbitrary 
order r 0, the abscissa 2r exists as a function of r in lhe interval 
0<r<oc. In generalization of the above inequalities lhe function 
a = Àr is a non-increasing continuous convex function with numer­
ical slope < 1 (see [6], pp. 57 and 60, and [8], p. 118). We introduce 
the number Q(> — oc) as lhe limit Q = lim Âr. It follows from

r->oo

the results just mentioned that when r increases from 0 to oo, 
then Ar will be either a strictly decreasing function which tends 
to for r->oo, or Âr will from a certain step r0, i. e. for r]>r0, 
be constant = Q.

We define now for every number a in the interval Q <a <oc 
the number r = ip (a) as the greatest lower bound of those values 
r'>0 for which Ar,< a. The function r = ip (a) is called the summa­
bility function of the Dirichlet series. It is equal to 0 for <7> Ao and in 
the interval -Q <a< Ao (when we suppose that Ï2 <Âo) it is simply

1 This paper is based on notes left by Professor Harald Bohr. The manuscript 
has been prepared by Dr. Erling Følner.

1
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the inverse function of a = /-r. Hence it follows from the above 
results that r = ip (cr) is a continuous convex function which in 
the interval ß<cr<Ä0 is strictly decreasing with.numerical slope 
> 1, i.e. with a left derivative ip' (z0— 0) < — 1 at the point a — Âo. 
Further, if /.r is constant = from a certain step r0, then 
y(cr)->r0 for cr->i2; otherwise ^(cr)->oc for ít->/2.

Contrary to the abscissa of convergence 20, the abscissa Í? has 
a simple function theoretical meaning (H. Bonn [2], and [3], p. 124; 
M.Riesz [7]). Indeed, for every a0> Í2, the function /’($) represen­
ted by the series is of finite order with respect to / in the half 
plane a>a0, i.e. there exists a number Z>() such that

(2) /-(a + ÍZ) = O(|i|')

when 11\ -*oc, uniformly for all <t>ct(), whereas /’(,$•) is not regular 
and of finite order in any half plane o-><t0 where an<i). For 
every a> Q we define the number pt (<r) as the greatest lower bound 
of those values Z^*0 for which (2) holds for this value of a. 
This function /z (cr) is called the order function, or the Lindelöf 
¿¿-function, of f(s). It is equal to 0 for cr>A0H~l because the 
Dirichlet series is absolutely convergent for o> Zo + 1. It follows 
from the Phragmén-Lindelôf theorem that the function // (<j) is a 
continuous convex function. Thus, denoting by M/i (£^o+ O ,lie 
smallest number with the property that /¿(a) = 0 for <r>w», the 
function /¿ (cr) is (when Í2<co//) strictly decreasing in the interval 
Ï2 < or < o)/t. We mention that pt (a0) (£? < a0 < oc) is also the order 
of f(s) in the half plane a><r0, i.e. the greatest lower bound of 
those values Z>0 for which (2) holds uniformly for all cr>oro.

As to the connection between ip(o) and //(<?) it is known (see 
[6], pp. 49 and 53) that

ip (or) < pi (o’) < ip (o’) + I.

The present paper deals with the problem whether the above 
results concerning the functions ip(o) and /¿(o) and the connection 
between them are the best possible, i. e. whether conversely 
for two functions ip(a) and ft (a) which have all the properties 
mentioned above there exists an ordinary Dirichlet series 

with ip((i) as summability function and pi (<t) as 
order function. No complete answer is obtained, but it is shown 
that if we impose on the function pi (a) the additional condition

*



Nr. 4 5

that it, too, has a numerical slope > 1 in the interval in which it is 
strictly decreasing, i.e. that (when D<co/Z) we have //'(co/z— 0) 
< — 1, then the answer is in the affirmative. In other words, we 

t shall prove the following

M ain Theorem. Let y> (a) be a continuous convex function 
defined in an interval <?>£?(> — oc) and equal to 0 to the right 
of a certain finite abscissa and (if Q) such that
V»' (coy —0)< —1. Further, let p(o) be a continuous convex function 
defined in the same interval a> Q and equal to 0 to the right 
of a certain finite abscissa co„>£? and (if w „> £?) such that 
fi (m^ — 0) < — 1. Finally, let

y) (o') < /« (a) < i/> (a) + 1
for all a > Q.

Then there exists a Dirichlet series f(s) = s which has
the given functions ip (a) and ft (a) as summability function and 
order function, respectively.

} We remark that as a consequence of the assumptions of the
theorem we have a>1f) < o>fl < + 1. The condition
which according to the above results is necessary whether 
//'(co» — ())< — 1 or not, therefore has not been included in the 
theorem.

We do not know whether there exist ordinary Dirichlet series 
/*(s) = x c/n/« s for which the order function p(a) is not identic­
ally zero and does not satisfy the condition //'(co/z— 0) < — 1. 
For the zeta-series with alternating signs

c (s) ( i - 21 -’) = Z (-1 )n+1 >r”
Il = 1

it is known that p(a) — 0 for a > 1 and //(o') = — a for cr<0.

The question as to whether //' (a>/( — 0) <—1 therefore amounts to 
whether /«f-j = 0 fand hence u (cr) = 0 for a >7 and /«(o') =

—o' for CT<“l,i.e. to the Lindelof hypothesis £ + it] — 0 (| t |e)

for every e > ().
If we restrict our attention to the summability function y (o'),
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we immediately see from the Main Theorem, that the known 
results are the best possible, i.e. any continuous convex function 
ip (a) defined in an interval a>i2(> — oc) and equal to 0 to the 
right of a certain finite abscissa Q and (if m^> Í2) such <
that ip' — 0) < — 1, is the summability function of an ordinary 
Dirichlet series. Indeed, we have only to apply the Main Theorem, 
choosing //(o’) = y>((7). This result generalizes a result of the 
author ([3], pp. 104—110) concerning the abscissae of summability 
of integral order, according to which the inequalities (1) are the 
best possible.

In the proof of the Main Theorem certain basic examples 
play a decisive role. In these examples Q = —oo (so that we are 
dealing with entire functions) and the y’-curve as well as the 
//-curve are half lines as scon as they have left the real axis, i. e. 
in the intervals— oc < cr < coy, and — oo<a<(o/l, respectively. It 
appears immediately from the above inequalities that these half 
lines must be parallel and that the //-line must lie above or coin­
cide with the y>-line. Further, their distance measured on a vertical 
line must be < 1. Our basic examples correspond to those extreme 
cases where the two half lines coincide or have the vertical <
distance 1. In the special case where the numerical slope a of the 
half lines has its minimum value a — 1 examples have already been 
constructed by the author ([4], pp. 10—14, and [5], pp. 713—720). 
Generalizing these examples we construct in § 2 and § 3 examples 
for an arbitrary a> 1. (The reader need not know the examples 
for a = 1.)

In § 4 we construct from the extreme cases in § 2 and § 3 all 
intermediate cases where still both the y-curve and the //-curve 
are half lines to the left of a>7/) and coZi, respectively. The Dirichlet 
series obtained in § 4 are to serve as our “bricks” in the final 
construction in § 6 in which a Dirichlet series is formed by linear 
combination of denuinerably many such series. § 5 is inserted 
for the purpose of giving two lemmas concerning the summability 
function and the order function of a Dirichlet series obtained by 
linear combination of denuinerably many Dirichlet series. 4
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§ 2. Construction, for an arbitrary «>1, of a Dirichlet
\ / \ Io for > 0series with v (CT) = (CT) = =

I — aa for a< 0.

Let Pi, p2» j°3»’* - l)e a sequence of positive integers which 
satisfy the condition

for all m and let

Pm + l^i^+OPm

where for brevity’s sake we have put - = 0 (0<0< 1). We con- 
a

sider the Dirichlet series

ann ~ Pl (Pl + dl) p2, —“I" (/>•’+2 <0 '+••• 
71 = 1

+ I'm ‘ ("') */'», + <Q (Pm + 2 -------- F ( - 1 )”'

+ --- = Î«/O-
nt = 1

Here we have used the notation u for the m111 difference with 
span d, i. e.

^■"P = •+(-d"(5«p+^.

For such differences we shall use the known inequality (see for 
instance H. Bohr [4], p. 15)

(2) I d"' (/>-’) I < 2"'“'' I s 11 s + 1 I ... I11 /,

which is valid for d> 0, p > 0, a + h > 0, and h = 0, 1,2, ■ • •, m.
The above series has previously been considered by the author 

([3], pp. 94—99), and it was shown that its abscissae of summa­
bility of integral order h are determined by

^=-/i0 (/i = 0,1,2,•••).

Thus Q =— oo, and ip(—hO) — h for h = 0,1,2, •••. Since y>(cr) 
is convex, this implies that y> (c) =—aa for a < 0, and hence 
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ip (a) = 0 for cr>0. Thus it only remains to prove that it (o') = 
— ao for o < 0, which implies that //(o') = 0 for o > 0.

Since // (a)>v>(a) it is enough to show that //(a) <— ao for 
cr < 0. Further, in order to prove this latter relation it suffices to 
prove that
(3) f(s) = O(\t\'1) for ct=—/i0 4-£,

where h runs through the numbers 0,1,2, • • • and e > 0 is arbi­
trary. Indeed, the inequality //(—hO + f) <h together with the 
continuity of ft (cr) implies that //(—hO)<h, and this latter in­
equality for h = 0, 1,2,-•• together with the convexity of //(o) 
implies that //(cr) <— ao for all or<O.

In the proof of (3) we shall use the fact that X 2>,„‘ ¡s 
convergent for every £>(). This fact, however, follows at once 
from (1) in view of which

We write
í(S) = ¿/7.(P;s)+Í<(/O.

m =1 in = It + 1
h

where the sum /¡ (.$•) = .X’zl'P (p~s) consists only of a finite num- 
m = 1

her of terms ann * and therefore is bounded on every line o = <r0. 
oc

In the series Y J™ (/>„/) we shall apply Hie above inequality (2) 
m = h + 1

to each of the terms 4™(PmS)’ ni — li + 1, h + We obtain 
for m> h and .<? on the line a =— hO-\-e (where o + h > 0)

i coo i £ im~h h i *+11 • • • i *+* -11 <

2'* I s11 s + 1 I ■ • ■ I « + h - 1 I + " e~e-h =

2-/I|S||S+ 1 I • - - |s+/t— 1 |2">-K.
00

Since X?2ntp~£ is convergent we see that ,X d"' (pm‘s) converges 
m = h + 1

absolutely for o =—hO-\-E and that its sum (s) satisfies the 
relation f2 (s) — 0 (| t f'). Finally, since /(s) = fv (s) + (s), we see 
that f(s) = O(|/p) for c = — hO-\-e, as we had to prove.
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§3. Construction, for an arbitrary a>l, of a Dirichlet 
series with

I 0 for ff>0 i 0 for </> —
V (a) = and (a) = "

— a<r for a < 0 1 — ao for a < -= v = a-
In view of the general properties of the summability function 

and the order function it suffices to show that the constructed 
series has the right order function and the abscissa of convergence 
Âo = 0. Thus our task is to construct a Dirichlet series with 
Z() = 0 and £? = — oc and with the given function p(cr) as order 
function.

We start again with a sequence of positive integers Pt<p2< 
p3 <• • • which increase rapidly. We assume here that they increase 
so rapidly that A 2mpñe converges for every e>0 and so that

¿ 2"lPJne = °(Pm£) and 2‘V °0A/)
in = M + 1

for M -> oc and every e > 0 and L>0. Next, we choose integers 
lm and dni of the orders of magnitude p“n and l, respectively. 
It will be convenient to choose

+ 1 and llm = U 1K

Further, we put
fm = Win

and choose the numbers q of a slightly smaller order of magni­
tude than the pm. We set

Pm
(m + 1)3

We remark that the pm from the beginning must be chosen so 
that certain inequalities which on account of the above demands 
are fulfilled for large ni will be fulfilled for all in. The inequalities 
to which we refer (we shall not write them out explicitly) are 
those which express that the term groups given by the braces 
(• • • } in the series immediately below do not overlap.

Our Dirichlet series f(s) = zf s is now constructed from 
term groups the mth term group of which 
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consists of altogether (çm+1) (/n + 1) terms a n~ s. These terms 
are distributed in qm+ 1 smaller term groups [ • • • ]m>p O'= 0,1, 
2,- • -,qin) each of which apart from a complex sign is simply an 
mth difference (with span c/m) and thus contains m +1 terms 
on7z \ More specifically, our series is defined in the following way :

where for in >1, 0 < v< qm the square bracket [• • has the 
meaning

[ • • • ]«., = (j,n + V (,n + 1 ) JZ(/nl+ + 0 dm)~S =

0 r(m 4 1) (/m + v + 1 > dm'

+ ••• + (- 1 )"' (zm + v (m + 1 ) dm + .

We shall now prove that this series x>>, an7? s possesses all the 
desired properties. We divide the proof into three steps.

Io. We prove first that our series has the abscissa of conver­
gence z0 = 0. Since | an | = |/^"| = 1 for n = lm(m = 1,2, •••) 
we see that the series is divergent at the point s = 0 and it is 
consequently plain that Ao>(). In order to show that ¿0<0, i.e. 
that the series is convergent for a > 0, we first show that our 
series is absolutely convergent for a > 0 when we preserve the 
square brackets (but not the braces). On account of a later appli­
cation we shall even show that under preservation of the square 
brackets the series is absolutely convergent in the whole plane. 
We do this by showing the absolute convergence in the half 

_ I 1
plane a > a. =------— for h = 0,1,2,* • •. We write

h
where the first sum only contains a finite number of

m = 1
square brackets In order to prove that the second sum

X

— *s absolutely convergent when we keep the square
in = h +1
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brackets (but not the braces) we estimate each of the g + 1 
brackets in the term with index m>h by the
inequality (2), §2. For m>h and s in the half plane a > ah 
(where a fortiori a + h > 0) we get

< a"-'11 s11 s + 11 • • • I » + /> -11

Hence the sum of the absolute values of the gm + 1 brackets 
[• • ’k» in <• • -}m is estimated by

21 I < (</,„+1 ) 2”*“" HI s+11 • • • I «+-1
V = 0

and consequently, since qm<pm, dm< and lm> p^ by

0) -2| [■ • *lm,rl = 2“h|s| |s+ 1 I-• • |s+ h-1 I 2mp-aa-h+\
V = 0

where o-><T/land m>h. From this inequality we immediately 
infer the stated absolute convergence in the half plane a > ah =

1 in fact, the series V 9,"p~aCT—/l 1 1 is convergent since 
a m

the exponent —aa — h-\- 1 is smaller than — a<yh— h +1=0. Thus, 
in order to show that the series qJt n 5 itself (i. e. the series 
without any brackets whatsoever) is convergent for a > 0, we 
only have to show that the partial sums of [••*]m,v for <r>0 
tend to 0 for m-+oo. That this is the case is, however, obvious 
since the sum of the absolute values of all the terms an 5 in 
[• • dni.p for a > 0 is

7/1

f(s) = 0 ( 11 |h) for a > ah + £.
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In fact, this will immediately imply that Q =— oc and

/i < h — 1 — aoh for h — 0,1,2, • • •,

and next, by help of the convexity of fi (cr) we get 

it (or)< 1—aa for all or<—.” a

For a> olt we write again

/(«) = Z !
Ill 1

X

/l

The first sum {•••},„ contains only a finite number of terms 
m = 1

aRn ~s and is therefore an entire function fi(s) bounded in every 
00

half plane o>a0. In the second sum Y • •} we estimate each 
m = h +1

of the terms {• • -}„((m = /i-f- 1, /i + 2, • • •) by the above inequal­
ity (1). For ni > h and .$• in the half plane cr>cr//+£ we get

Since Y 2mpmue is convergent we infer that the infinite series 
00

Y is uniformly convergent in every bounded part of the 
m = h + 1

half plane or>o,/1-f-£. Consequently, since e>0 is arbitrary, the 
function (s) represented by this series is regular in the half 
plane a> ah; furthermore, it satisfies for ah + e < a < (say) 2 (and 
hence of course also in the whole half plane o > ah + e) the 
inequality

/•2(.S') = 0(|i|").

Since /’(s) is obtained as the sum of f, (s) and f2 (s), we see that 
/'(s) is regular for a > oh and equal to O(|/|/l) for <T>cr/i4-£ as 
we had to prove.

3°. We come now to the salient point, namely the proof that 

u (<r) > 1—ao for a<~. Let be an arbitrary abscissa < a a 
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we consider the behaviour of /*(s) at the points sv = <r0+ itM on 
the line a = <t0, where /v are the previously introduced ordinates

— 7tpyl, and we shall (even) prove that for sufficiently large M

(2) I /■(■’.„) I

For this purpose we first determine a positive integer h so that
— 1 1 î ,, ,a. =----------< crn <-. r or M > n we write" a a

~ V / A/ + ' ‘jtn = (Sm) + M (SAf)’
m = l m=M + l

and we shall prove that both the “beginning” and the
“remainder” Byi(sy¡) for M -> oo are equal io while
the A/111 term TAZ(sv) l°r sufficiently large 3/ is numerically 
larger than 2/1v'aff°. In this way the inequality (2) will be proved.

(1) For the “beginning” B^¡(sM) we use a rough estimate. 
The numerical value of each of its coefficients an + 0 is a binomial 

coefficient with in< 3/ — 1 and hence it is < 2‘V ’. Thus

Zl = 1
where

ZAf—i “ Za/—i + 7a/—i 1) (Za/_i ” Lu— 1

for 3f sufficiently large. Hence, since <r0 < 1,

I zMsa/) I < 2Ai—1 i?"_<T° = 0 (2M_1 za/^i) = 0 (2M_1
n = 1

and consequently, since 1—acr0>(),
I

«!/<■’.») = » = » (dr“"”).

(2) For the “remainder” Z?v(sv) we can apply the inequality 
(1) since all occurring in are > M > h and o,0>cr/1. We gel, since

► — a<r0 — /i + 1 < 0,

m = Af + 1
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(3) We shall finally prove that the 47th term '7’v(sv) satisfies 
the inequality

I 7’ is —aCTo

for all sufficiently large 47. The reason for the validity of this 
inequality is that all the terms «„z»--' occurring in
(and there are rather many of them on account of the choice 
of the </m), namely the (<7M+0 (47+1) terms distributed in 
the 1 brackets [•••Jm.v with 47+1 terms in each bracket, 
for sufficiently large 47 “almost point in the same direction’’; 

more precisely: these terms all lie in the angle —— < z? < —. 

We postpone the verification of this fact for a moment and 
shall first show that when once this property is established we can 
immediately complete the proof. In fact, we may argue as follows. 
The sum of the binomial coefficients occurring in each of the 
9M+1 square brackets is equal to 2A/, and every zi occurring in 
the sum belongs to the interval ZM< zz < l'M and a fortiori to 
the interval /w<zz<2Zw when 47 is large. Thus, for sufficiently 
large 47 we have

and this last quantity is larger than 2 t\t U(7° for large 47.
It remains to prove the decisive fact that all terms ann in

TT 7T7’v(sw) lie in the angle—-<p<~ for 47 sufficiently large. That 

this is the case is of course due to our choice of the complex 
signs of the occurring coefficients an=f=0. We consider an arbi­
trary one of the qM + 1 brackets [• • 

(/„+ » (.W + 1 ) J' (ZM+ r (M + 1) d,,)—« (>■ = 0,1,2, • • •. </Ai).

Denoting the number Zv/+v(47 + 1)íZ3/ by r = z-(47,v) we gel



(A = O, 1,2, • •Ai)

When we take account 
and insert the known 
once that

of the fact that 0< A < A/and 0<r<c/v 
expressions for c/M, r, qM, we see at

dM
7Cr and for M -> oo

independently of v and A. In view of this, the above for­
mula for the amplitudes together with the relation

lim x 1 log (1 + x) = 1 
x->0

yields the result that the amplitudes of the single terms in 
tend to 0 for M->oc. In particular, these amplitudes

71 51lie in the angle—-<p<- for M sufficiently large.
o

Thus, all our statements concerning f(s) = an are proved.

§ 4. Our “bricks”.
We shall now, for an arbitrary a¡>l, construct a class of 

Dirichlet series for which again the y>-curve and /¿-curve when 
they have left the real axis are half lines with numerical slope a, 
but where the vertical distance from the ^-half-line to the /¿-half­
line no longer assumes just one of its extreme values 0 or 1, but 
has an arbitrary value between these two limits. At the same 
time we shall perform a trivial translation in the direction of 
the real axis. For the sake of convenience, we characterize a 
function of a which is 0 for co < a < oe and equal to —a (a — co)



16 Nr. 4

for —oc < a < o) by the symbol {co; a). We shall prove the 
following

Theorem. For arbitrary co, a, and d such that a>l and 

0<d<-there exists a Dirichlet series f(s) =£ann ' with the 
a

summability function [m; a) and the order function {co+d;a}.

In the proof we may evidently assume that co = 0. Also, we

may assume that 0 < d<-. We know that there exist two Dirichlet J a
series (.$) =^> a’ltn s and f2 (s) = A a"n \ where the y- and 
//-functions of the first series are given by

Vi = Pl = «)

while the y>- and //-functions of the second series are given by

We now replace s by sH------ d in f>(s), i.e. we consider instead
(X

of /’2 (s) the function f¿(s) — =¿La'nn • The ar,d

//-functions of ß (s) are given by

V>3= {d — aj and //3 = (d; a).

We shall now show that the series

f(s) = ft (s)+f3 (s) (<+«"') n ' =2?%«"

will satisfy our demands.
First, ß = —oc. Secondly, the summability function ip (or) is 

equal to 0 for cr>0 since both ^_,a„u s and are con­
vergent for cr > 0, and y> (cr) — (a) for every negative a since

(a) > y3 (or). (We have used here the fact that the sum of two 
series of constant terms both of which arc summable of the r’11 
order is again a series summable of the rth order, while the sum 
of two series of which the one series is summable of the r111 
order and the other is not, is a series which is not summable of 
the rth order.) Thirdly, the order function // (cr) is equal to 0 for 
a > d since both //t (cr) and //3 (cr) are equal to 0 here, and
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/í (<r) = fi3 (o) for a<d since «;î (<r) > (er). (We have used here 
the fact that the sum of two functions of t which are both 
0(|/p) is again Oflfp) while the sum is not O(|fp) if one of 

► the functions is 0(|f|h) and the other is not.)

§ 5. Two lemmas.
In this section we shall prove two lemmas concerning summa­

bility and order of magnitude of Dirichlet series which are formed 
by linear combination of infinitely many Dirichlet series.

Before passing to these theorems we start with the following

Remark. Let

fo CO a(nn_S’ fl <0 =-£’ «n)n_S’ ’ ' •

►

he a sequence of Dirichlet series which we assume to be alt abso­
lutely convergent (at least) for a>a0. We assert that it is possible 
to determine a sequence of positive numbers Eo, Elt- • • so that the
infinite series

(1)

are convergent for every sequence e0, ££,••• with

0 < e0 < Eo, 0 < et < , • • •

and that further, when the sums of these infinite series are denoted 
by â2, • • •, the series

(2) e0 fo (0 + ei fi (0 4-----

and the Dirichlet series (obtained by formal calculation from (2))

(3)

’ will be absolutely convergent for a>o0 and have the same sum.
Proof. We put

ZI I n-"" = A'„, Z I «<*> I n-’" = /<„••■
n = l n = 1

Dan.Mat.Fys.Medd. 27, no.4. 9
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and choose the positive numbers Eo, • • • so that the series 
Ze„K„ is convergent. Then

\ eN I ) I if a < oc for a > <t0 
A7, n

so that

where all occurring series are absolutely convergent (cr > cr0). It 
is plain that the conclusion still holds (with the same E ’s) when 
we omit the assumption 0 < eN < EN for finitely many indices N.

Lemma 1. Let

i/o (*) =£ .71 (s) h^ n~s, g2 (s) =£ b™ n~', ■ • •

be a sequence of Dirichlet series (each of which possesses a half 
plane of convergence). Denoting by A(rX) the rth abscissa of sumina­
bility of the function (s) (N = 0, 1, 2, • • •) we assume that there 
exists a number r(>0) such that

A[n)<A^= A (N = 1,2, •••).

// follows immediately that the ip-curve of all the Dirichlet series for 
a>A must lie under or on the curve (zl+ r; 1} so that all the 
Dirichlet series must be absolutely convergent for <r>/l + r+ 1, in 
particular for o >71+r-|-2.

Then there exists a sequence of positive numbers et < , e2 <E2,- • •
[where EN (N — 0,1,2, • • •) are obtained from the above remark 
applied to the functions gN(s) (N = 0, 1,2, •• • ) and Z + r + 2 
instead of cr0] such that the Dirichlet series

(4) G (s) = g0 (s) + q gt (s) + e2 g2 (s) 4------Bn n

where

(») lin = b‘-n+^h^+^'’+---

for every sequence e1,e2,--- such that



Nr. 4 19

(6) O < £t < et, O < £2 < e2, • • •

mill have its rth abscissa of summability equal to the number A. 
t (The series (5) converge and the two series in (4) are absolutely

convergent for cr > A + r + 2 with the same sum G(s). This 
follows immediately from the above remark since eN<EN for

Proof. We have to prove that we can choose the positive 
numbers eN<EN so that the series G(s)—^Bnu s under the 
assumption (6) is summable of the rth order for o>A, but not 
summable of the rth order for any a < A. We divide the proof 
into two parts.

Io. In this part we choose the positive numbers eN<EN so 
that the series G(s) — .2, Bnri~s un(ier assumption (6) is sum­
mable of the rlh order for o>A. In order to obtain this result, 
it is obviously enough to secure that the series

6* (s) = 6i f/i (s) + e2 </2 (s) 4----- Bf n s

becomes summable of the r,h order at the point s — A; for when 
both of the series g0 (s) iff n~s and G* (.$) — x Bf n s are 
summable of the rth order for o>A, then their sum G (s) =

' will have the same property. In the proof we shall 
suppose that A = 0. This is of course no real limitation since 
when A + 0 we may replace s by s4-/l. Since the abscissae of 
summability zl^, Aff • • • are all smaller than A, the series 
21 iff, \ iff, • • • are all summable of the rth order. We have

00

(7) ]ff =£f eN iff') (convergent for eN < EN).
N = 1

In our proof we make use of the fact (see [6], pp. 21—22) that a 
00

series N ' an is summable of a given order r if and only if a 
n = i h

certain linear expression Sn = y kv av in the first n terms of the 
V = 1

series (with coefficients kv which depend not only on v but also 
on n and /•) tends to a limit, the summability value of the series, 
for We denote the expression S for the series b^f, 

9*
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X" b^\ ■ • • by T^\ T^\ • • •, respectively, and the expression Sn 
for the series \ B* by 7';' . Then from (7) it follows that

Here, the quantity will for each N = 1,2, ••• tend to a limit 
U^\ the summability value of the series when n->oc.

71 
Hence there exist constants KN such that

We now choose the positive numbers eN<EN so that
PC

converges; then for every choice of the numbers en in the intervals 
0 < ev < the series (8) will be uniformly convergent in n since 
it is majorized by E", e?7 /<A,. Since each of the terms eNT^> 
tends to a limit for n -> oc (namely en U^) it follows that the 
sum 7’’j of the series will also lend to a limit for n-> oo (namely 
U* = eL + e2 + • • •), as we had to prove.

2°. In this part we choose the positive numbers eN<EN so 
that the series G (s) — Bnn~s under the assumption (6) is not 
summable of the rth order for any o<A, i.e. so that the rth 
abscissa of summability is >A. If the series g0 (s) = ^? //0) n * 
(with the rth abscissa of summability A) is not summable of the 
rth order at the point s=A we can use the numbers eN found 
under Io. In fact, we saw that G* (s) = X’ Bn n~s under the assump­
tion (6) is summable of the rth order at the point s=A so that 
the series X Bn n~s, which arises by termwise addition of¿ n~"s 
and s, cannot be summable of the rlh order at the point
s = A and therefore must have its rth abscissa of summability 
>A. However, we have not made this special assumption con­
cerning the series n~s and as a matter of fact we could 
not make it in view of the applications. Hence we must proceed 
differently, and we shall use the known expression for the rth 
abscissa of summability \ of a Dirichlet series ¿ «nn—s by means 
of the coefficients of the series. In the proof we shall assume that
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the number Z is > 0, say = 1 (since the expression just mentioned 
is only valid when Â.X)). This is of course no real limitation since 
when A + 1 we may replace s by s--A, where A+A = 1. As to 

r this expression of Â by the coefficients of the series we shall only
use the following fact (see [6], p. 45 and [3], p. 86 and [1], 

71
pp. 70—71). There exists a linear expression ¿>n = Y. A-., a„ in the 

v = 1
first n coefficients of the series (with coefficients kv, which depend 
not only on v but also on n and r) such that the necessary and 
sufficient condition in order that the series x, ann~s bave its rth 
abscissa of summability 1 is that

S is not equal to O (n ô) for any <5 > 0, or equivalently 
is not equal to o (/? ) for any <3 > 0.

►

(The expression S here is not, of course, the same as the expres­
sion under Io.)

We shall denote the expressions Sn corresponding to the scries 
Y b^ n~s, Y b\P n~s, • • • by 1^\ • • • , respectively, and the 
expression S for the series Y Bnn~s by Since by assumption 
the series //"Yj-5 has its rth abscissa of summability =A—X 
we know that to any given ó > 0 there exist infinitely many
values of n for which

Since each of the series n s (N=l,2, •••) has its rth
71

abscissa of summability A(r^<A = 1 there exists for every
AT = 1, 2, • • • a number > 0 such that

7JY = o(n_zlY-

►

It suffices to show that Tn for a suitable choice of the positive 
constants eN < EN under the assumption (6) for every ó > 0 satis­
fies the inequality

for infinitely many values of n. This is equivalent to saying that 
for some sequence of positive numbers which tends
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to 0 there must exist a corresponding sequence of positive integers 
zq < z?2 < • • • such that the inequality

is satisfied for all m = 1,2, As ô-sequence we shall here use 
an arbitrary sequence of positive numbers which tends to 0 and 
satisfies the conditions

ó2 < zi!, 03< min (dt, d2), • • •.

We shall now indicate positive numbers eN<EN with the desired 
properties. We proceed in steps.

First step. We choose a positive integer nt so that

For this n = nt the expressions 7^, 7^, • • • assume certain values,
say A’u, fr12, • • • . We 
e12 < Zs2, • • • so that

choose the positive numbers eu < Et,

is convergent with sum < - n( \ On the analogy of (8) we have

(9) T„ = T<°>+ r, 7<‘> + r, 7<2’ + • • ■ (for 0 <rv < EN).

Hence, for every choice of e2, - • • in the intervals 0 < < <>lt
0 < £2 < e12, • • • we have

Second step. We choose an integer z?2 > zq so that

|r<",l>nï"’’ and also 7fx | Tæl < | n~\

The latter inequality may be obtained since <52<d1. For this 
n = n2 the expressions T^\ ■ • • assume certain values, say 
Zc22, ^23» ‘ ‘ • We choose the positive numbers e22 < E2, ei3< Es, • • • 
so that

00

e2N I ^2N I
N = 2 
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is convergent with sum < - n2 ôî. Then for every choice of et, e2, • • • 

in the intervals 0 < < Et, 0 < eN < e2N (N = 2, 3, • • • ) we have, 
on account of (9),

00

/nth step. We choose an integer nin> so that

►

The latter inequality may be obtained since < min (zlL, • • • ,J t). 
For this n = nm the expressions T['n\ T^n + i\ • • • assume certain 
values, say ^mm, + * * * • We choose the positive numbers 
emm < Em> em, m + 1 < Em + 1’ * ' ’ so thal

is convergent with sum <-nm\ Then for every choice of q, e2, • • • 
o

in the intervals 0 < q < • • •, 0 < em_ j < Em_1, 0 < eN < emN
(N = m, m 4 !,•••) we have, on account of (9),

It appears from the above that the numbers

eN = min{e1N, • • •, evv} (N=l,2,---)

may be used to satisfy our demands under 2°.
Finally, for each N we choose the smaller one of the two 

numbers eN found under Io and 2° as our final These eN satisfy 
the demands in Lemma 1. This completes the proof of Lemma 1.
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Lemina 2. Le/

h0 (•*>') =JE c¡¡° ns, /it (s) =£ 4° n s, h2 (s) =2J cn2) n S>- '■

be a sequence of Dirichlet series (each of which possesses a half 
plane of convergence). We assume that all the functions hN(s) are 
regular and of finite order in a certain half plane o>a{}\ further, 
denoting their orders of magnitude in this half plane by pN, we 
assume that

pN < /i0 = p for N = 1,2, • • •.

It follows immediately that the ip-curves of the Dirichlet series for 
a > ct0 must lie under or on the curve {a0+/z; 1} so that all the 
Dirichlet series must be absolutely convergent for a > or0 + p + 1, in 
particular for o’ > <r0 + /z + 2.

Then there exists a sequence of positive numbers e{ < E,, e2 < E2, ’ ’ ’ 
[where En(N = 0, 1,2, • • •) are obtained from the previous remark 
applied to the functions hN (s) (N = 0, 1, 2, • • •) and <r0+ p+ 2 
instead of ct0] such that the function

(10) H(s) = hQ (s) + Ei ht (s) 4- e2 h2 (s) 4----- Cn n~s,

where

(11) Cn = <0)+el4,)+£2c<l2>+---

for every sequence eife2l-‘' such that

(12) 0 < el < et, 0 < e2 < e2, • • •

will be regular in the half plane o> a0 and in this half plane 
have the order of magnitude p. (The series (11) converges and 
the two series in (10) are absolutely convergent for o,><r0+¿í + - 
with the same sum II (s). This follows immediately from the 
previous remark since eN < L\- for N = 1,2, •• •.)

Proof. We have to prove that we can choose the positive 
numbers eN<EN so that the function

H (s) = h0 (s) 4- hi (s) 4- £2 h2 (s) 4-----

under the assumption (12) will be regular in the half plane a > cr(l 
and in this half plane satisfy the relation
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H (s) = O(\t\fl + Ö)

for every <5 > 0 but not for any ô<0. We divide the proof into 
two parts.

Io. In this part we choose the positive numbers eN<EN so 
that the function H (s') under the assumption (12) will be regular 
in the half plane a > a0 and in this half plane equal lo O (| /1ó) 
for every ó > 0.

In the proof we shall use only that /zN< /z for N = 0,1,2, • • • 
and not that /zN < /z for N = 1,2, • • •. Let <52, • • • be a sequence 
of positive numbers which tends to 0. On account of the assump­
tions there exist positive constants ÆnüS, (m — 1,2,- • •; AT = 0,1,2, • • •) 
such that

|/iN(s)l<KmN(|/|+l)" + ,i- for o>a„.

We choose the constants eN<EN so that

». is convergent for every m 1,2, • • • . This may be done by sub­
jecting the ev to the following demands (only in a finite number 
for each ev)

rz 1 rz 1 rz 1
ei'kn<'2’ e2^ti2<'z|’

e3 ^23

e3 ^33 < g » ’ ’ *

Then we have under assumption (12)

I H (s) I < ( I Zio («) I + «i IM«) H------- H I /?,„_! (s) I ) + (em I /i;n (s)|+---)

( 111 + 1Y + ôm + (S eN ( 111 +1 Y1 + <

A2(|/|+l)/z + ó" for o>a0,

where .4( and /12 are constants.
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From this follows our above statement concerning the order of 
magnitude of Fl (s). In order to see that // (s) is regular for a > cr0 
we remark that the series

/joØ+ej h1(s) + c2 7i2 (s)4-----

in the half strip a>o0,\t\<T, where T is any fixed positive 
number, will be majorized by the series

so that it is uniformly convergent in this half strip.
2°. In this part we choose the positive numbers eN<EN so 

that H(s) under the assumption (12) is not equal to 0 (|/|/¿_ f5) 
in the half plane a > cr0 for any d > 0, or, in other words, that 
H (s) is not equal to o (| t\/l~ö) in the half plane a > a0 for any 
<5 > 0. Thus it suffices to show that to every ô>0 there exist 
points s = o4- it with a > a0 and 11\ arbitrarily large such that

We do this by showing that for a certain sequence of positive 
numbers d2, • • • which tends to 0 there exists a corresponding 
sequence 4- z'/p s2 = <r2+ z72, • • • with am > cr0 and | tm | -> og 
so that

l//(SJl>3l/nir-0"' for
On account of the assumptions we know that to every 7in(s), 

N = 1,2, •• • there exists a positive number such that

|hN(s)| = o(|f|/i_J-v) for a>a0.

We now choose an arbitrary sequence of positive numbers <52, • • • 
which tends to 0 and satisfies the conditions

<52^/li, ó3< min (dt, Zl2), • • • .

Our task is to choose the positive numbers eN<EN in such a 
way that it is possible under the assumption (12) to lind complex 
numbers sm corresponding to the numbers <5m with the above- 
mentioned properties. We shall do this in a sequence of steps.
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First step. We choose a complex number sí = crl-[-ití with 
<rt > cr0, | /L | > 1 so that

At the point s = .$-t the functions /q (s), 7z2(s), • • • assume certain 
values /¡’n, À*l2, • • • . We choose the positive constants eit<Et, 
e12 < /1'2, • • • so that

1 .
is convergent with sum • Then for ()<ev<e1N
(N = 1,2, • • •) we have

I w (»1) I > I />o WI e1Nl k1N 1 > h Í! I'*“'’1-

N = 1 ¿

Second step. We choose s2 = <r2 + z/2 with <r2 > ít0, | /2 | > 2 so that

l/10(s2)l>li2l'‘-'s-

and al the same time

The latter inequality may be obtained since ó2<Zl1. At the 
point s = s2 the functions /z2 (s), Zi3 (.$), • • • assume certain values 
/c22, ^23»’ ' ’ • choose the positive numbers e22 < E<>, e23 < E3,- • • 
so that

00

^e2N I ^2X I

is convergent with sum <^|/2|Z<_02- Then for 0 < eL < Eit 

0 < en < e2N (N = 2, 3, • • •) we have
00

I W (’ä) I à I ft, (-’2) I - 1711 (s3) I -Z e„ NI A.,NI >
X = 2

mth step. We choose sm = %+ itIH with cni>o-o and |/m|>zn 
so that
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and at the same time

i'l 1i>, (»„> I +1--21*» 0„.) ! + ••■ + I (sm) I <i| ij""0'

The latter inequality may he obtained since <5m< min (dt, • • • ,zlni_1). 
At the point sjn the functions hin (s), ^m + 1 («), ‘ ’ assume certain 
values + • • • . We choose positive constants emm< Em,
em,m+i<Em + i>’'- so that

oe

is convergent with sum Then for 0 < < Et, • • •,

0 < em_ ! < » » < «y < emN (N = in, m + 1, • • • ) we have

I H (SrJ I > I /20 (Sm) I — (^1 I 111 (sm) H----------- •" Em-1 I hm-l (Sm) I ) ~

Ve I A- l>|/ I / IM —<5„. ==1), |/z-<5
'mN I hmN I " I 'in I q I 'm I q 1 'm I q I 'm I

N—m •> >’ °

It appears from the above that the numbers
1 

eN = min {e1N, • • • ,eNN} (N=l,2, •••)

may be used in order to satisfy our demands under 2 .
Finally, for each N we choose the smaller one of the two 

numbers eN found under Io and 2° as our final eN. These eN 
satisfy the demands in Lemma 2. This completes the proof of 
Lemma 2.

§ 6. Proof of the Main Theorem.

We are now in a position to prove the Main Theorem stated 
in § 1. Since the function /'($) — 0 has a>/t = a>y — Í2 = —oc¡ 
we need only consider the following three cases: (a) wfi — co^ = 
£>—oc, = Ï2>—oo, and the “general” case (y)
^>^^>^> — 00.

As an example of the special case (a) we can obviously use
the series

C(s-Æ+1) =2?nß_1n~s.
i

In fact, the series is absolutely convergent for cr>£?, and the 
function has a pole at s = Q.
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The “intermediate” case (ß) will be treated at the end of this 
section by specializing, and slightly modifying, the construction 
used in the “general” case (y).

Let us therefore assume for the present that > — oo.
In the main, our Dirichlet series x. Ann~s is constructed by linear 
combination of infinitely many of the “bricks” from §4, i. e. by 
linear combination of Dirichlet series whose summability function 
and order function have the form {ta1; a) and {co2;a} with common 

a>l and ()< au —co< <- (viz. with the vertical distance from 
a

the ^-half-line to the ¿¿-half-line >0 and < 1). This construction, 
however, requires some caution because we have to build up at 
the same time two convex curves and because each of these 
curves may contain infinitely many vertices, i. e. points with 
different tangents from the right and the left.

We call a pair (7’v, Tfl) of parallel (perhaps coinciding) 
straight lines Tv and T/l a pair of supporting lines (in a general­
ized sense) of our y-curve and our ¿¿-curve when one of the 
lines and Ta is a proper supporting line of the corresponding 
curve al a point outside the real axis while the other line is 
defined by the upper position of all lines with the given slope 
which lie under the other curve. If the latter line contains at least 
one point of the curve in question, this line is of course a proper 
supporting line. In any case it is easily seen from the convexity 
of the two curves ip(p) and ¿¿ (er) and the relations ip (a) < ¿¿ (a) < 
ip(a)A~l that the vertical distance from the line to the line Tfl 
is > 0 and < 1. Furthermore, since ip' (wy, — 0) < — 1 and 
¿¿'(co/z — 0) <—1 the slope —a of the two lines is < — 1, i. e. 
a > 1.

We start by choosing a denumerable set of abscissae cq, ct2,- • • 
which lie everywhere dense in the interval £}<a<wfl. These 
abscissae are chosen arbitrarily with the exception that we do 
not use any abscissa o al which any of the functions ip (a) and 
p(a) has different derivatives from the left and the right (i. e. 
which corresponds to a vertex on any of the two curves). For 
each of the above chosen abscissae a. which lie in the sub-interval 
Q < a < coy of Q < o < co/t we consider both the supporting line 
Sf of the y’-curve al the point (o¡,ip (aß } íHid the supporting line 
of the ¿¿-curve al the point (<q,¿¿(<q)). For each of the abscissae
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ai of the above chosen sequence which | if co^ < co/t) lie in the 
complementary sub-interval < a < wfl of Q<a<(o/i we con­
sider only the supporting line Sf¡ of the /¿-curve al the point 
The supporting lines and (in the first case) SV are uniquely 
determined since none of the two curves has a vertex at a point af. 
For each of the abscissae ai which lie in the interval Í2 < a < 
we now determine two pairs of supporting lines (Tv’, 7'") (which 
may coincide), one pair being determined by Tv = SV, the other 
pair by T!< — • For the first pair we mark the point (o\))
on the line = S'f; for the second pair we mark the point
(,/z (o-j)) on the line T/l = S“. For each of the abscissae ai which 
(if m1/)< lie in the interval co^ < a < co/t we determine one pair 
of supporting lines ( T*, T'1), namely the pair defined by T/l = S^, 
and for this pair we mark the point (¿r-,/z (g^)) on the line 
T,i = S". We arrange the pairs of supporting lines (tv, Tfl) thus 
obtained (for each of our abscissae either one or two pairs) in 
a sequence

(T/, 7’‘)•

As mentioned above, we have marked for each of these pairs 
a point on one of its lines, 7n/ or 7,/<. If we do not take notice of 
the marked points, it is evident that some of our pairs of sup­
porting lines may coincide. (If for instance both the y-curve and 
the /¿-curve are of the type {co; a} with the same a, then all our 
pairs of supporting lines will be identical.) If such a coincidence 
between pairs occurs we shall only keep one of the coinciding 
pairs, but at the same time we shall change the point marking 
of the pairs according to the following specification. Let us assume 
that the pairs of supporting lines

coincide.—For orientation we note that this sequence can either 
contain just two pairs of supporting lines, one with point-marking 
on the line Tv, the other with point-marking on the line Tfl, or 
the sequence will contain infinitely many pairs of supporting 
lines. This latter case will only occur when al least one of the 
curves y>(o-) or /¿(o') contains a straight segment outside the axis 
of abscissa.—As mentioned above, we keep only one of these 
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pairs, but we now mark more points on the pair, namely all 
points on its 7’^-line which are marked on one of the lines 

’ as we^ as a^ points on its T^-line which are mar- 
ked on one of the lines 7’^ , 7'^ , • • • . If more than one point is 
marked on the line we arrange these points in a sequence; 
analogously, if more than one point is marked on the line V we 
arrange these points in a sequence.

The set of pairs of supporting lines (with their arranged mar­
ked points) obtained by the above procedure is now arranged in 
a (finite or infinite) sequence

It is plain that each of our abscissae cq which lie in the interval 
<? < a < w,,, will occur as abscissa of a marked point on one of 
our lines Tv as well as on one of our lines 7'/¿, while each of 
the abscissae cr which (if lie in the interval co^< cr<
will occur as abscissa of a marked point on one of our lines 7'/¿.

For these pairs of supporting lines we introduce “bricks” in 
t accordance with §4, i.e. Dirichlet series

l\ CO =Z <*’ " 4 (0 =Z o‘.2) n~s. • • •. fN (0 =Z <N) " C • • •

such that those parts of the ^-function and the /.¿-function of the 
series /\-(s) where these functions are positive are determined 
by the half lines over the real axis which lie on 7”(’ and Tfa, 
respectively. This is possible since the slope —aN of the two lines 
is <— 1 and the vertical distance from to T1^ is ¡^0 and < 1 .

The series we are going to construct is formed by linear 
combination of these series ft (s),f2(s),‘ • • ; in fact, it has the form

F (s) — /; (s) + e2 /2 (s) 4------- F eN fN (s) 4----- =¿' An n~s,
oc

where 4 = gv We shall show that we can choose the 
N = 1

positive numbers e1,e2,--- so that /j (•O + «a Æ (s) H----- is re­
presented by a Dirichlet series 4;è n~s which for o>Q has its 
summability function P (a) equal to the given function ip (a) and 
its order function M(a) equal to the given function /¿(or). How­
ever, when Q> — oc we cannot always be sure that our construe­
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lion yields a function F(s) which does not have a limit abscissa 
of summability smaller than the given number Q.

In order to obtain the said properties of F(s) it is enough to 
prove, first, that the summability function V7(cr) of F (s') satisfies 
the equation ^(o.) — ip(af) for those of our which lie in the 
internal Q<a<col/, (this includes that &F must be < P) and, 
secondly, that the order function M (a) of F(s) satisfies the equation 
M (a f) — pt (cr f) for all our a.. In fact, the abscissae o¡ lie every­
where dense in the interval Q < a < (ofl; so for reasons of conti­
nuity we may conclude that the equations

V7(a) = ip (a) and M(a) = pi (a)

hold in the intervals Ï2<c<wy and £?<cr<co^, respectively ; 
furthermore, since V7 (w^) — ip (w^) = 0 and M(m/() = pi (wfl) — 0, 
we get ÿ7(a) = 0 = ip (a) for o > co^, and M (a) = 0 — pi (a) for 
a>w/t so that the above equations will hold in the whole interval 
Q < a < oc.

We remarked above that the constructed function F(s) when 
Q> — oc might have QF<Q and not QF = £? as desired.

There are some cases with Í? > ~ oc when automatically 
QF =Q, namely when (o’— 0)-> — oc or /Z (a— 0) —>■— oc for 

In fact, it is impossible in these cases to prolong the given 
ip- and /¿-curve to the left under preservation of their convexity, 
so that we can be sure that the constructed function F(s) will 
have &F = £? as desired.

In the other cases with Q > — oc we can prolong the ip- and 
the /¿-curve to the whole interval —oc < o<oc under preservation 
of all the properties demanded in the theorem, for instance by 
two parallel half lines with a common slope < min /lim ip' (a— 0),

\a + i2
lim /¿' (o— 0)\.This we do before passing to the construction of 
a+Q /
F(s), i.e. before choosing our

The function F(s) obtained will then be an entire function 
with these prolonged functions (o’) and /¿ (cr) as its summability 
function and order function, respectively. In order to obtain a func­
tion F* (s) from F(s) which has the right Í2 and without changing 
the ÿ'-curve and the M-curve for cr > £2 we may for instance add 
the function
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C(s-ß+ 1)

In this way we obtain a function F* (s) with all the desired 
properties.

We now pass to the actual construction of F(.$) referred to 
above. We determine the positive numbers £x = £*, £2 = £*, • • • 
successively by the following procedure.

First step. We choose = e:¿' as an arbitrary positive number. 
We consider the pair of supporting lines belonging to
/’i (.$•) with its marked points and distinguish between the following 
three cases.

1 . There exist marked points on the line T^’, but not on the 
line If only one marked point is lying on we denote its 
abscissa by <t0 (where Æ < a0 < co^,). If infinitely many marked 
points lie on 7^’ we denote by cr0 (where £?< <r0< ío^) the abscissa 
of that point on 7’JZ' which comes first in the given ordering 
of the marked points on 7y’. In the present case we are only 
interested in the ^-function al the point <r0, and not in the 
M-function al this point.

We pul the demand on the sequence £2,£;l,*** that

(1) F(.s) = £* /; (s) + e2 f2 (s) + e3 ß (5) 4----- =2? /i ,,f

is to have V7 (<r0) = (<t0) . In other words, we demand that the 
rj)h abscissa of summability Ar of F (s) where r0 denotes the 
positive number y> (<r0) is exactly equal to <t0. We apply Lemma 1 
of § 5 to the functions

i/o (s) = 4 A (s), f/l (s) = /2 (s), </2 (s) = /:( (s), • • •

and the numbers A = cr0 and /• = r0 just determined. The support­
ing lines Zyy, 7’y’j, • • • of the y’-curve cut the line a = a0 below 
the point (cr0, y>(o-0)) (because the point (<r0» V (CTo)) ’s 110 vertex 
on the V’-curve). Hence the abscissa of summability ol the 
series </1 (s), </2(s), • • • all lie to the left of <t0 while the Cq11 abscissa 
of summability of <70 (s) is equal to o-0. Il follows from Lemma 1 
that there exist positive constants r22, e23, • ■ • with the property 
that the function (1) for 0 < £2 < e22, 0 < fi3 < e23, • • • has its r^h 
abscissa of summability equal to o-0, as desired.

Dan.Mat.Fys.Medd. 27, no.4. 3
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2°. There exist marked points on the line hut no marked 
points on the line 7’^- If only one marked point is lying on 
we denote its abscissa by cr0 (where Q < a() < (o/t). If infinitely 
many marked point lie on 7^ we denote by or() (where £?< < æ/t)
the abscissa of that point on 7’'/ which comes first in the given 
ordering of the marked points on 7’^. In the present case we are 
only interested in the ^/-function at the point zt0, and not in the 
’/-'-function at this point.

We put the demand on the sequence f2, f3, • • • that the func­
tion (1) must be regular for a > tr0 and have M ((To) — /< (u0) . 
In other words, we demand that the function (1) is to be regular 
in the half plane a > tr0 and in this half plane have (exactly) the 
order of magnitude /z0, where /z0 = /z (a0) > 0. We apply Lemma 2 
of § 5 to the functions

/i0 (s) = ef (s), /¡t (s) = f2 (s'), /i2 (s) = /*3 (s), • • •

and the numbers a0 and //0 just determined. The supporting lines 
7’^, ^ni’ ‘ ' cul l’ie *’ne ° ~ ffo below the point (zr0,/z (<r0) ) (be­
cause the point (a0,//(<70)) is no vertex on the //-curve). Hence 
the orders of magnitude of the functions /q (s),/z2 (s), • • • in the 
half plane a > zt0 are all </z0, while the order of magnitude of 
the function 7z0 (s) in the half plane cr > cr0 is equal to /z0. It follows 
from Lemma 2 that there exist positive constants e22, e23, • • • with 
the property that the function (1) for 0 < e2 < e22, 0 < f3 < e23, • • • 
is regular in the half plane a > <r0 and has the order of magnitude 
/z() in this half plane, as desired.

3°. There exist marked points on the line as well as on 
the line 7’^. We consider two abscissae </0 and o-'0' (they may coin­
cide) where o'Q denotes the abscissa of the marked point or the 
first of the marked points on the line 7^’ while denotes the 
abscissa of the marked point or the first of the marked points 
on the line 7’/I/. By exactly the same considerations as under 1 
and 2°, using the first time Lemma 1 and the second time Lemma 2, 
we find two sequences of positive numbers e'22,e23»,,‘ and 
e22,e23,• ’ ’ such that the function (1) for 0<e2<e22,<£3<e23,- • •, 
where e2/. = min (e2y, e2y) has V7 (zr'o) = y> (a'o), is regular for 
a > o’,), and has M(ct'o') = /z (cq).

Summarizing, we have by this first step found a positive
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constant e* and positive constants e22, <’23, • • • such that the func­
tion (1) for 0 < e2 < e22, 0 < e3< e23, • • • has the properly that its 
if'-curve will pass through the marked point or the first of the 

* marked points on 7’^ (if such points exist) and the M-curve will
pass through the marked ¡joint or the first oT the marked points 
on (if such points exist).

Nth step. (N>2). We assume that by the 1st, 2nd,• • - , (N—l)lh 
step we have determined positive constants £*, e2,•••, and 
(by the (N—l)th step) positive constants eN ¡(j — N, N1 ,• • •) 
such that the function

*'(*) = £-7t (s) +---- f-£^_1 /N-1 (s) + en fN (s) +
(2) . V-

+ SN + 1 /n + 1 + ’ ’ ’ ~^^nn

for 0<fiN<eNJV, 0<eN + 1<eNJV + 1,-• • has the property that 
its V'-curve passes through the first N—1 of the marked points 
on TV, through the first N—2 of the marked ¡joints on T^, • • •, 
through the first of the marked points on 7’^_1, and that its 
M-curve passes through the first N—1 of the marked points on 
7^, through the first N—2 of the marked points on T^v • • • , 
through the first of the marked points on • It is plain how 
this is to be understood when one of the supporting lines TV or 
T/< only has one marked point or none at all.

We choose an arbitrary constant in the interval 0 < en < eNN 
and shall show that we can find positive constants eN+1 N + 1< 
eN,N+l' eN+i,N + 2< eN,N + 2’ ’ ' ' SUch l,iat llie function

F(.s) = e* /; (.<?)+•••+ £* fN (s) + eN + 1fN + 1 (s) +
(3)

+ + 2 + 2 -------- =2Xi « -S

for 0<£N + 1 <eN+1 N + 1,0 <£N + 2< eN + 1JV + 2, • • • has the pro­
perty that its ï'-curve passes through the first N of the marked 
¡joints on 7’’/’, through the first N—1 of the marked points on 
7’j^p • • - , through the first of the marked points on 7'$, and that 
its AZ-curve passes through the first N of the marked points on 
7^, through the first N—1 of the marked points on T^,• • •, 
through the first of the marked points on 7’^.

3*
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IL is evident that the conclusion from the (N—l)lh step still 
holds good under the new conditions since

0<£*<eNN and 0 < < eN + 1>/< eN(. (,/= N+1, N+2,• • •).

Thus we have only to make sure that the ’P-curve (M-curve) 
passes through the A7*11 marked point on 7’’/' (7Y), through the 
(N— l)lh marked point on 7’ft ( 7^), • • •, through the first marked 
point on 7X (7’ft).

We consider the J111 pair of supporting lines ( 7'^, 7’^) 
(.l=ï, II,- --,N). Let er,) (where Í2 < cr¡, < col/;) and ct'J (where 
£? < c/0'< oj/z) denote the abscissae of the (A7-)-l-./)th marked 
point on the lines 7’^ and 7j, respectively (if they exist).

First, we put the demand on the sequence eN i’£Nt2’’"‘ 
that the function (3) (if a'o exists) has W (</0) = ip (<r'o). In other 
words, we demand that the rj/1 abscissa of summability Ar of 
F{s), where r0 denotes the positive number y>(</0), is exactly 
equal to </0. We apply Lemma 1 of § 5 to the functions

f/d GO = A GO 4----- H £j [j GO 4------b fN (-0 »
171 GO = /n+1 0)’ #2 GO = /n + 20)» • • •

E

and the numbers A = o'Q and /• = r0 just determined. The sup­
porting lines 77> (P + ./) of the y-curve cut the line c = o’,, below 
the point (0'0, fp (o'{)) ) (because the point (a„, ip (cr'o)) ls n0 vertex 
on the y-curve). Hence the r^h abscissae of summability of the 
series fp(s), P + J, all lie to the left of </0, while the rf,11 abscissa 
of summability of fj(s) is equal to ct(). Il follows immediately 
that the Pq11 abscissa of summability of <70(s) is equal to </0, while 
the Pq1 abscissae of summability of </i (s) » S^CO»"’- are smaller 
than </(,. Il follows from Lemma 1 that there exist positive con­
stants' e'v+i jv + 1, N + 2»’ ‘ ' w4h the properly that the func­
tion (3) loi 0 <Z Epj_|_ j < + 1, n +1 ’ 0 < + 2 <~' 4-1 , n + 2’ ' has
its r{jh abscissa of summability /lr equal to o-'n.

Next, we pul the demand on the sequence eA, + p en + 2,‘ • • that 
the function (3) (if cr'()' exists) must be regular for a > t/J and 
have M(a'o') = /z(<7q). In other words, we demand that the func­
tion (3) is to be regular in the half plane a > a\\ and in this half 
plane have (exactly) the order of magnitude //0 where /<0 — pc (a"^ > 0. 
We apply Lemma 2 of § 5 to the functions

1

*
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h0 (s) = ef A GO H------- H tf fj (04------- F «N !n GO»

/ll GO = fN + 1 (s) » /j2 (-0 = fN+ 2 ‘

37

►

k

and the numbers er,, and /.¿0 just determined. The supporting lines 
7’^, P + J, cut the line a — <r'o' below the point (t/J, /j, (o-'n)) (because 
the point ((t'J,//(cr'o')) ’s no vertex on the //-curve). Hence the 
orders of magnitude of the functions fp(s) in the half plane 
a > a'o' for P + J are smaller than /z0, while the function fj(s) in 
the half plane a > g'q has the order of magnitude //0. Il follows 
immediately that the order of magnitude of the function h0 (s) in 
the half plane a > ít'o' is equal to /¿0, while the orders of magnitude 
of the functions /q (0> 7j2 GO, • • • hi the half plane o>o” arc 
smaller than z/0. It follows from Lemma 2 that there exist positive 
constants 7f^ + 1 ni i’ Vvi i n + 2»*” with the property that the 
function (3) for 0 < fiN +j < Je" + 1N +j, 0 <eN + 2< Je^ + 1N + 2,- • • 
is regular for o > o\\ an(i has M(aj) = //(a'o').

It follows from the above that the numbers

Gv i i, j ~ min { leA, +1(y, • • ’ ,NGv +1,/’ + i, / ’ ' ' ’ ’ VGv + i, J }

(j-N+l.N+2,---)

have the desired properties (under step N).

The conclusion is still missing, namely that the sequence 
t ji;, e£, • • • found above is such that the function

(4) F (s) = s't fi GO + 4 f2 (s) -I----- „ n s

has the desired properties. This, however, follows at once from 
the remark that

h < + 1 < Gv + 1, N + 1 = Gv, N + 1

< E\' + 2 < 2,^ + 2^- 1, ,V + 2 4 Gv, N + 2

so that (4) gets the properties of (3) from the arbitrary step 
N (N= 1,2, •••), q-e.d.

This completes the proof of the Main Theorem in the “general” 
case (y) co/t > > Í2 > — oo.
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The remaining case (ß) c»fl > a>v = Í2 > — oc can be treated in 
a similar way as the general case. However, a small modification 
is necessary, dne to the fact that the y-curve does not leave the 
real axis, but consists of the interval £? < a < oe on the real axis. 
If we are in a case where the pair of functions and /¿(o') 
can be prolonged no modification is of course necessary since 
the prolonged curves fall under case (y). In any case, the “bricks” 
A(s)> fzts)' ' ' are obtained in the same way as before, but if we 
proceed as before (in the case where ip (a) and /¿(a) could not 
be prolonged) by the determination of the numbers ef, ef,• • • it 
is plain, since no marked points occur on the lines T1' of our 
pairs of supporting lines (TJJ, 7’{[J, that we have taken care only 
of the ^/-function, but not of the ’¿'-function. However, from the 
determination of the pairs (7$, 7^) it follows that all the Dirich­
let series fN(s) are convergent for <r>í?, for all the lines 7”(, 
pass through the end-point Í2 of the y-curve.

In order to obtain that (4) also becomes convergent for a >12, 
and hence '/z (a) — () for a> Í2 as desired, we choose a sequence 
cr* > > ' ’ • &• By our first step we add the demand to the 
previous demands that (1) is also to be convergent for s = af, 
and in order to obtain this situation we use a result obtained in 
the first part of the proof of Lemma 1 in the case /■ = (), namely 
the result that if the Dirichlet series (s), ff2(s)>' * ' are summable 
of the rlh order at the point s = A, then the positive numbers 
c1,e2,--- can be chosen so that the Dirichlet series G* (s) = 
ei .91 (s) + e2.92 Gs‘) + • • • =£ B* n~s becomes summable of the rlh 
order at the point s — A when only ()<£1<e1, 0 < e2 < e2,• • •. 
In our .Vth step we add the demand to the previous demands 
that (3) is also to be convergent for s = Except for this 
slight modification our previous method remains unchanged.

Thus the proof of our Main Theorem is completed.
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It is well known that in a first approximation white dwarf 
stars are such equilibrium configurations, which masses of 

matter with completely degenerate electrons take up under the 
influence of their own internal gravitational fields. The gravi­
tational forces act on the electrons mainly through a small radial 
displacement of the heavy particles relative to the electrons. 
Chandrasekhar [1] has in his theory of white dwarf stars taken 
account of the relativistic relation between energy and momentum 
of a particle in finding the equation of state of a relativistically 

► degenerate electron gas.
We shall here investigate the influence of another relativistic 

effect, namely the “spin-orbit interaction’’, which is well known 
from the theory of the fine structure of the hydrogen spectrum. 
The star will be considered as a kind of Tiiomas-Fermi atom, 
and we are thus using an approximation, which is well suited 
for the problem in question, even if it is not very good in the 
case of ordinary atoms. In the stellar interior we may namely 
deal with volume elements having linear dimensions that are 
small by a factor of about 109 in comparison with the dimensions 
of the star as a whole and still large by a similar factor in com­
parison with electronic wave lengths.

We place the origin of our co-ordinate system at the center 
of the spherically symmetric star and are then going to use Di­
rac’s equations for electrons in a central field.

The angle-dependent part of the solution is well known and 
is, independent of the form of the potential as a function of the 
distance from the center, leading to the following two simultaneous 
differential equations for two radial functions R± and R2: (cf. 
A. Sommerfeld : Wellenmechanik, Ch. IV, §7. [2])

1*
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E+MÄi==^(£_r+£o)Ä2

The notations used here and in the following have their usual 
meaning. The quantum number k is restricted to positive and 
negative integers.

Introducing the functions I)l = rRr and P2 = rP2 we get

^(£-V+E0)P2

(2)

In order to deduce a wave equation that enables us to apply 
the principles of quantum statistics we proceed as follows: We 

differentiate the first of equations (2) and substitute for —-2 

the expression from the second equation and get

fP1_kdPï k 
dr2 r dr r r2 1

(3)

Then P2 is eliminated from the bracket by the aid of the first 
of equations (2), so that we get

d~P, , (£-V)2-£02 _ k2-k
dr2 h2c2 r2

1^’p
he dr ~”

By an exactly similar procedure we find

d2P2 [(E-Vy-E2
dr2 h2c2

k2 + Á’

(4)

(5) *

In the case of a vanishing potential gradient these two differ­
ential equations are two wave equations. They have identical 
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eigenfunctions and eigenvalues for values of k that diller by 
one, and they are changed into each other by the interchange 
of + k and — k.

In order to treat the general case of a non-vanishing potential 
gradient, when equations (4) and (5) describe coupled oscilla­
tions, we introduce a linear combination

Q = ail\ + a2P2 , (6)

where a1 and a2 are as yet undetermined constants. Multiplying 
(4) and (5) by and a2 respectively and adding, we get

d2Q .
dr2 1

k2V)2_£2

/iV
(7)

►

We can now determine the ratio of the as and a new con­
stant, 7, and arrive at a wave equation for Q of the following 
form :

(8)

provided r2 can be treated as a constant in that region, char­

acterized by a small interval of r, which we will consider. 
Equating the coefficients of Px and P2 in (7) and (8) we get the 
following two equations

for the constantWriting A’o r~ (IV h ave

(9)

ka1 — k0a2 + gai = 0 

koa1 — ka2 + ga2 = 0.
(10)
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In order that the above equations have finite solutions for 
the a’s, the determinant

+ S'
must vanish.

This leads to the (secular) equation

í/2 = F-7¿. • (11)

The constant g niay then take one of the two values

S — i j/ 7ca /tq. (12)

If we choose the upper sign we have the differential equation

(£--V)2-P2 k-+yk2-k*
h2c2

wer sign

(£ -V)2-E2 F-j/F-Á’2
712c2 r2

The functions Qj and then are two different linear com­
binations of 7\ and P2. The request that Pj and P2 both fulfill 
the boundary conditions leads to a similar request for the Q’s.

The equations (13) and (14) may both, independent of the 
sign of g, be written as

The above equation is in the case of a hydrogen atom iden­
tical with the iterated Dirac equation given by Temple [3]. Our 
Q is equal to his W multiplied by r. In that special case the terms 

(iZ V\ *”
7 d / cancel each °ther, and k0 is equal to the line­

structure constant.
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►

For every energy value determined by this equation there is 
a 2 I k |-fold degeneracy due to the angular parts of the functions.

The quantum number / is namely equal to I k J —y (cf. Som­

merfeld, loe. cit. Ch. IV, § 8). For the hydrogen atom e.g. the 
2Si - and 2Pi-states both correspond to k2 — 1 and are both 
double. Similarly the 2Pa- and 2Zh-states,' which correspond to 
k = ± 2, are both quadruple etc.

For each sign and numerical value of g the number of states 
with energy constants lower than a maximal value Em, char­
acteristic of the star, in a volume element in the form of a shell 
concentric with the star, is equal to 2 | k | times the number of 
half oscillations of the radial function Q for the maximum energy 
value, because each state has one node less than that lying 
immediately above it.

The minimum value of k2 is ko, because a smaller value 
would cause E to be complex. (For the hydrogen atom this is 
no problem, since the line-structure constant is much smaller 
than one, the lowest allowed value of k).

The minimum radial wave length AmJn is determined as a 
function of Eni and g by

For a thickness of the shell of one cm the total number of 
states with a certain numerical value of g then is equal to

because we need not here distinguish between g and g 1. The 
first factor two to the left is due to the double sign of g.

We find the total number of states by integrating over | k | 
from g2 — 0 to its maximal value, which value makes the inte­
grand vanish. We use the relation

2 Å- </ k - ¿(s2)- (18)
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The total number N of states with energy less than Em is 
then determined by

The number of states per cubic cm is found by dividing N 
by 4 7tr2. When all states with energy constants less than Eni 
are occupied by electrons, the material density () is found by 
multiplying the density of stales by the mass per electron, 
where the mass of a hydrogen atom is denoted by For pure 
hydrogen the molecular weight //e is equal to one. We gel

(? 3 n2 h ’ c3 V dr) (21) <

If the gravitational potential per unit mass is called U, we 
have Poisson’s equation:

2 dU .= 4 n(j Q. r dr
(22)

differential equation for V (writing h for 2nh):

2

*

(21) and (23) we 
distribution of the

have neglected such non-uni­
heavy particles as has been 
[4].

In deriving 
formitv in the 
taken into account by Schatzman

Introducing as a new variable

I'he potential function T is equal to so that we arrive
at the following

(¿m
32 n- /d-nijj (r

3 A3?
d2V 2 dV 
dr2 r dr

Em~V 
lJ = ~~E~

?. (23)

(24)
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where we have made use of the relation

= m0c2. (26)

we

If the term —in the bracket in equation (25) is neglected, 

find Chandrasekhar’s equation [5]. Our aim is, however, 
to find the effect of this term on the mass-radius relation for white 
dwarf stars. If we introduce Chandrasekhar’s variables

r = ar], y = y0<p,

« =
1 /37i3\i

mo!/o \^GcJ
liUo 1

7,71 • 10s cm
/'J/o

(27)

we can write the differential equation as

2'M
r/2 dr¡Y dr¡) (28)

where y has to lake the value one at the center. The boundary

condition is = 0 at the center. The surface is found where 
a r¡

(he density vanishes (at = th)-

In the limiting case when is very near one, the limiting 
I/o

solution is, just as is that of Chandrasekhar’s equation, that of 
3an Emden equation of index ty- (Then all relativistic effects are 

negligible).
Following Chandrasekhar we deduce the following expres­

sion for the mass of the whole configuration:

|/.3 -
-I |z2 Ti/ç M V dr¡/i¡-T¡í>

M (29)
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where the numerical factor is 2,85 ^u~2 solar masses. (For 
comparison with Chandrasekhar’s results we have used his 
adopted values of the natural constants throughout this paper).

The differential equation (28) has been integrated numerically

for three values of the parameter —The results for the radii 
J/Ó

and masses of the corresponding stellar configurations are given 
below. For comparison, Chandrasekhar’s values are also given. 
Our central densities are the same as in his models for the same 
parameter values.

Table I.

The density distributions are given in Table II. The unit of

1
i/o2

R
h

Chandrasekhar’s values

« /
'* n

9 d<P\

0,5 . 2,58 0,597 2,50 0,707
0,2 . 1,84 0,920 1,67 1,243
0,1 . 1,55 1,091 1,29 1,519

density is

li =
8 7r//fj»n/n¡ c8

3 Ä8 9,82-ÎO5^ g cm“3.

The unit of radius is Zx.
A comparison of the results with those of Chandrasekhar 

shows that the radii are larger and the masses smaller than his 

for the same values of —. For the same value of the mass the
I/o

radius is smaller than Chandrasekhar’s.

The limiting case of vanishing —2- has also been treated by 
I/o

numerical integration. Table III gives the variable <p together 

with —?/2<z and as functions of ri. In this case there is no 

definite radius measured in units of lxy~ l. For any value of the 
parameter we have namely the following limiting form of cp as 
a function of Tjt

,C2(P^ q + -. (30)
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Table II.

yo2
r .
h

0,5 0,2 0,1

0,0............. 1,00 8,00 27,00
0,1............. 0,99 7,81 25,71
0,2............. 0,97 7,29 22,01
0,3............. 0,94 6,44 16,59
0,4............. 0,89 5,37 11,03
0,5............. 0,83 4.21 6,68
0,6............. 0,76 3,13 3,86
0,7............. 0,69 2,22 2,20
0,8............. 0,61 1,53 1,26
0,9............. 0,53 1,03 0,73
1,0............. 0,45 0,68 0,42
1,1............. 0,38 0,45 0,24
1,2............. 0,32 0,29 0,13
1,3............. 0,26 0,19 0,07
1,4............. 0,20 0,12 0,03
1,5............. 0,16 0,07 0,01
1,6............. 0,13 0,04
1,7............. 0,10 0,02
1,8............. 0,07 0,00
1,9............. 0,05
2,0............. 0,04
2,1............. 0,03
2,2............. 0,02
2,3............. 0,01
2,4............. 0,00 • • • •
2,5............. 0,00

In the case of = 0, however, the constant c, vanishes,
I/o

because we have here

as we approach the surface. The radius might therefore be finite 
in units of l1.

The limiting mass can be estimated from the data in the 
table to be some 85 per cent of Chandrasekhar’s limiting mass. 
This, which is that of an Emden polytrope of index 3, corresponds

► to a value of —equal to 2,018 at the surface.dr]
A more detailed investigation of the model considered would 

not be of very much interest, because we have here still neglected 
the influence of exchange effects. Eddington’s criticisms of the 



“current” theory of white dwarf stars have therefore not vet 
been properly answered, also because we have still preserved 
dividing walls (here spherical) inside the star for determining 
energy states instead of determining them for the star as a whole. 
'Flic present method of approach to the problem might serve as 
a starting point for investigations as to the effect due to the in­
troduction of such refinements into lhe theory.

Table III.

»7 <P
» /

— T99 qIqc '/ <P — ’/V e/ec

0,0............. 1,0000 0,0000 1,000 3,9 0,3747 1,2453 0,008
0,1............. 0,9984 0,0003 0,995 4,0 0,3667 1,2563 0,007
0,2............. 0,9934 0,0026 0,980 4,1 0,3590 1,2669 0,006
0,3............. 0,9853 0,0088 0,955 4,2 0,3516 1,2768 0,006
0,4............. 0,9740 0,0203 0,920 4,3 0,3445 1,2862 0,005
0,5............. 0,9600 0,0386 0,876 4,4 0,3377 1,2949 0,005
0,6............. 0,9433 0,0643 0.823 4,5 0,3311 1,3038 0,004
0,7............. 0,9244 0,0978 0,763 4,6 0,3248 1,3120 0,004
0,8............. 0,9035 0,1389 0,697 4,7 0,3187 1,3194 0,003
0,9............. 0.8811 0,1868 0,628 4,8 0,3129 1,3270 0,003
¿0............. 0,8576 0,2402 0,558 4,9 0,3072 1,3338 0,003
1,1............. 0,8332 0,2978 0,489 5,0 0,3017 1,3407 0,003
1,2............. 0,8084 0,3580 0,424
1,3............. 0,7836 0,4195 0,364 6,5 0,2771 1,371 0,0018
1,4............. 0,7589 0,4806 0,310 6,0 0,2561 1,395 0,0012
1,5............. 0,7346 0,5406 0,262 6,5 0,2381 1,416 0,0009
1,6............. 0,7109 0,5984 9,221 7,0 0,2225 1,433 0,0007
1,7............. 0,6879 0,6536 0,186 7,5 0,2087 1,448 0,0005
1,8............. 0,6657 0,7058 0,156 8,0 0,1966 1,461 0,0004
1,9............. 0,6443 0,7544 0,131 8,5 0,1858 1,473 0,0003
2,0............. 0,6239 0,8000 0,110 9,0 0,1762 1,484 0,0002
2,1............. 0,6043 0,8424 0,092 9,5 0,1675 1,493 0,0002
9 9 0,5857 0,8815 0,078 10,0 0,1596 1,501 0,0002
2,3............. 0,5679 0,9179 0,066
23............. 0’5510 11.9515 0,056 15 0,1087 1,56 0,000034
2,5............. 0,5349 0,9826 0,048 20 0,0825 1,59 0,000012
2*6............. 0’5195 1,0112 0,041 25 0,0665 1,61 0,000005
2,7............. 0,5049 1,0377 0,035 30 0,0558 1,62 0,000003
2,8............. 0,4910 1,0621 0,030 35 0,0481 1,63 0,000002
2,9............. 0,4778 1.0855 0,026 40 0,0422 1,64 0,000001
3,0............. 0,4652 1,1067 0,023 45 0,0376 1,65 0,000001
3,1............. 0,4532 1,1266 0,020 50 0,0340 1,65
3,2............. 0,4418 1,1448 0,017 55 0,0310 1,66
3,3............. 0,4308 1,1620 0,015 60 0,0284 1,66
33............. 0,4204 1,1781 0,014 65 0,0263 1,67
3,5............. 0,4104 1,1933 0,012 70 0,0245 1,67
3,6............. 0,4009 1,2075 0,011 75 0,0229 1,68
3,7............. 0,3918 1,2210 0,009 80 0,0215 1,68
3,8............. 0,3831 1,2333 0,008 85 0,0202 1,68

90 0,0191 1,69
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Introduction.

ince the discovery of natural radiocarbon1*’2* and its appli-
cation to dating problems3* by Libby and coworkers, a number 

of papers have appeared describing the technique4*’ °*’. 6* and the 
results obtained at Chicago7*’ 8* and elsewhere9*. In addition, the 
concordance of the results with geological and archaeological 
expectation has been discussed10*’ 11*’12*’ 13*. However, no extens­
ive treatment of the limitations and errors of the method has 
been given although several isolated examples have been discuss­
ed11*’ 14*’ lo*'16*. It is the purpose of the present paper to present 
some general conclusions regarding the range of the method, 
its accuracy, possible sources of error other than that of pro­
venience, and the rationale of the instrumentation. The problems 
are considered from the theoretical viewpoint and no new experi­
mental data are given. Since the fundamentals of the method 
are well summarized in the literature and in Libby’s book17*, 
it is assumed that the reader is familiar with them.

Instrumentation.
Description of Screen Wall Counter.

For the measurement of natural radiocarbon, the screen wall 
counter4* was selected. The design of this instrument is based 
on two considerations, namely, the desire to obtain the maximum 
net count from a sample in a detector of a given size, and the 
necessity of establishing accurately a net count which may be 
small compared with the background of the counter. The carbon 
powder to be measured is mixed with water to form a thick 
paste and is spread evenly over the inside surface of a cylinder

1* 
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which is placed concentrically to the axis of the counter. In 
this way, all absorption losses other than self-absorption are 
eliminated, a geometry of essentially 50 per cent is obtained, 
and the sample fills the maximum solid angle around the counter. 
The cathode of the counter consists of an open grid or screen 
of wires. The screen docs not define the radial extent of the sen­
sitive volume of the counter which, in fact, extends to the surface 
of the sample. The purpose of the screen is simply to improve 
the electrical characteristics of the system. Through the use of

-------- VScreen J

Fig. 1. Screen wall counter.

a double sample cylinder, one half holding the sample, the 
other a blank, frequent alternation between the two is possible 
without affecting the counter filling. Thus, the effects of temporal 
changes in background arc minimized.

Comparison with Gas Sample Counter.
The fundamental problem in the selection of the proper 

detector unit is to obtain the maximum counting rate from a 
detector of minimum physical size. The physical size is an impor­
tant parameter, since the background rate of the instrument is 
proportional to the size, and the effect to be determined is of 
the same order as or smaller than the background even under 
the most favourable circumstances.

For a gas sample counter, practically all the disintegrations 
occurring in the sample will be detected and, therefore, the 
efficiency defined as the fraction of the disintegrations detected 
is essentially unity. For the screen wall counter, using a thick 
sample of elemental carbon, the efficiency is only 5.46 °/04)’ o)*.

* When this value for the efficiency is used in equation 1, the range n must 
be taken as 20 mg/cm2. If the more recent value for the range of 28 mg/cm2 is 
used, the efficiency Ex is 3.8 °/0. The quantity which has been determined experi­
mentally is the product E-p = 1.10 mg/cm2. Physically, this is the thickness of 
the layer which—in the absence of self-absorption—would give the same counting 
rate as the thick sample.
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However, a screen wall counter of conventional size will contain 
some 20 times the amount of carbon that can be used in a gas 
sample counter having the same background. The two methods 
thus happen by chance to be similar with respect to this para­
meter and a more detailed comparison is in order.

This can be made as follows. The counting rate Sx to be 
expected from a screen wall counter is

51 = Ex @ A S, (1)

where Ex is the efficiency as defined above, o is the range in 
mg/cm2 of the C-14 ^-particle, A is the sample area which is 
equal to rcdjj, di being the inside diameter and lx the length 
of the sample cylinder, S is the specific activity of the sample 
in disintegrations per minute and milligram.

For a spherical gas counter, assuming an efficiency of unity, 
we have

52 = M|dlS, (2)

where M = mg of carbon per cm3. If the filling gas contains 
one atom of carbon per molecule and has a pressure of one 
atmosphere, M = 0.54 mg/cm3.

In order to consider counters having the same background 
we will assume the background to be proportional to the hori­
zontal cross-sectional area, which is for a cylindrical screen wall

ljdjL and for a spherical gas counter Therefore,

(3)

is the condition for identical background rates. Since the sample 
area of a screen wall A is % times its background area, the screen 
wall sample area can also be expressed as Jt times the back­
ground area of the corresponding spherical gas counter, viz. 
7l2 o— d2. Combining equations (1) and (2), using the numerical

values Ex- q = 1.10 and M = 0.54, and setting Ax = — d|, we find
4
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(4)

This equation is plotted in Fig. 2, using the volume of the spherical 
counter as the independent variable.

This ligure oilers a comparison of the sample count ratio of 
a screen wall counter to that of a gas counter as a function of 
the sample size.

It is clear that the screen wall counter is superior to the gas 
counter in the case of small detectors, while the gas counter is 
to be preferred when the detectors are large. Although it is always 
desirable for reasons of counting statistics to use as large a 
sample as possible, other considerations (such as difficulty of 
operation of large counters and the mass of the shield required) 
usually limit one to a volume of a few liters. It is seen from 
Fig. 2 that, in this region, the ratio of counting rates is not much 
different from unity and is slightly in favour of a gas sample 
counter. Because of the geometrical requirements of the anti­
coincidence shielding method, however, the sphere is not the 
optimum shape. That is to say, a bundle of anti-coincidence 
counters of conventional design makes a cylindrical cavity for 
the sample counter. Therefore, from the viewpoint of the mass 
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of shielding required as well as the electrical and the construction 
characteristics, the comparison should be made between a screen 
wall counter and a cylindrical gas sample counter of the same 
dimensions.

Such a comparison is given in Fig. 3, where the additional 
parameter a of the ratio of counter length to diameter has been 
introduced. The principles of good counter design will in general

OV 0S0& 1
vo/ume of counter-, /iters

Comparison of Screen-Wo/1 witt> Cp/fndr/cat 
Gos Sompfe Counter of some Dimensions, 
(f. is ratio of counter fenptf) to diameter).

Fig. 3.

dictate that a be greater than 1. Although this shifts the curves 
in favour of the screen wall counter, it is apparent that the count 
ratio is still so close to unity that the choice will probably be 
made on the basis of considerations other than sample: back­
ground ratio. One such consideration is the amount of sample 
available. From this point of view the gas counter is to be pre­
ferred. But this advantage will in general be of considerably 
less importance than the ease of operation (stability, reliability). 
The gas counter assumed in the previous analysis requires 
operation in the proportional region with a filling pressure of 
1 atm. This necessitates an operating voltage of the order of 
5 kV and the detection of pulses of the order of millivolts. Such 
a system is inherently more difficult to operate than a Geiger 
counter at 1 kV, giving pulses of several volts.
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Statistical Considerations.

Effect of Background Rate.
To maximize the statistical precision obtainable in a given 

counting time it is desirable to maximize the ratio S2/B, where 
S is the net sample count and B the background counting rate18\

Fig. 4.

£AAec¿ cf ßockgrouncf fo>¿e on Accuracy

For a screen wall counter, where both the background and the 
sample counting rate are linear functions of counter size, the 
larger of two counters is always belter from this point of view. 
As pointed out in the preceding section, the maximum possible 
size of the counter is determined by practical considerations and 
therefore the only possibility to improve the accuracy obtainable 
in a given counting time is to reduce the background count. The 
extent to which this is necessary and profitable is indicated in 
Fig. 4, in which the error in years calculated merely on the basis 
of statistical considerations is plotted as a function of the back­
ground rate for a contemporary sample and for a 10,000 year 
old sample. The counting rate from a contemporary sample is 
assumed to be 6.68 counls/min.4^ and the counting time 24 hours 
on sample and on background. In practice, the background of 
the counter shielded with lead is found to be about 100 counts 'min., 
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and when shielded with anti-coincidence il becomes 4 to 
6 counts a minute. It is clear from the curves that, while it is 
essential to make use of the gain from the anti-coincidence 
shielding, further reduction of the background gives no spectac­
ular gain in accuracy except for very old samples. The assump­
tion of equal times spent on sample and background is not 
optimum when the background rate becomes small compared

Background - counts per m/'nute

5.

Effect of Background on Maximum Age £>etermino6/e

to sample rate18). This effect will be noticeable in Fig. 4 only 
for fairly recent samples. It will make the curve somewhat 
steeper over the middle cycle of the abscissae and will make 
the asymptote a factor of 1/2 lower.

The principal gain from background reduction is the exten­
sion of the method to older samples. This effect is shown in 
Fig. 5 which represents the maximum age determinable (with 
2 days’ counting) as a function of background rate.

The limiting age is here arbitrarily defined as the age for 
which the net sample count is equal to four times its statistical 
standard deviation. Il is necessary to be rather conservative in 
the choice of this limit since, as the difference between back­
ground and sample becomes very small, one is less certain that 
the statistical error is the limiting one. It is apparent from the 
curve that every time the background is reduced by a factor of 
two, 2500 years are added to the range of the method.
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The extension of the method to older samples through the 
reduction of background is clearly a difficult process because 
of the logarithmic relationship between these quantities. More­
over, other sources of error which are not considered in this 
calculation, such as low level chance contamination, may become 
the limiting factors preventing the attainment of the limit given 
by the curve.

In the measurement of the contemporary assay and of the 
samples of known age, the limiting factor in the accuracy appears 
to be counting statistics.

Effect of Counting Time.
In Figs. 4 and 5 the counting time has been assumed to be 

48 hours. This time has proved in practice to be a good compro­
mise between the gain in accuracy with prolongation of counting

Accc/rocy of Age Determ/naA'on os 
a Aoncfion of Count/nq //me

times and the desire to measure more samples. The two days 
counting time is a convenient one in that this period fits in well 
with the time required to prepare a sample. The effect on the 
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accuracy of changing the total counting time is presented in 
Fig. 6, where the statistical error is plotted against total counting 
time on a double logarithmic scale. It is obvious from this figure 
that the accuracy increases rapidly during the first day of count­
ing and much more slowly thereafter. For example, after two 
hours of counting on a 5000 year old sample, the age is determined

to zb 1000 years. After one day of counting the accuracy is zb 
300 years, and after two days of counting it is zb 200 years. 
To reduce the error to 100 years would require counting for 
eight days.

Because of the possibility of other sources of error, such as 
contamination of the sample during processing, it is to be pre­
ferred that greater statistical accuracy be obtained through the 
measurement of independently prepared samples rather than 
through the extended counting of a single sample.

'fhe extreme difficulty encountered in an attempt to extend 
the method to very old samples by the extension of the counting 
time is illustrated by Fig. 7. Even in the reductio ad absurdum 
of counting 100 days with a background of 5 counts per minute, 
the limit of the method is seen to be 40.000 years. The maximum 
age so far reported by radiocarbon dating is 28.000 years19).
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Effect of Isotopic Enrichment.
The discovery of natural radiocarbon was made on samples 

which were isotopically enriched by methane thermal diffusion 
columns1^’ , and a similar apparatus was constructed at the 
University of Chicago for possible use with very old samples. 
There are several practical difficulties associated with the use of 
this technique, such as the large amounts of sample necessary,

the length of time required, the cost of the process, and the 
difficulty in establishing the exact value of the enrichment factor. 
This will of necessity limit the application of isotopic enrichment 
to a few samples of extreme importance. The results which can 
be accomplished by this technique are indicated in Fig. 8, in 
which the maximum age as previously defined is plotted against 
the isotopic enrichment factor for three different counting times. 
It seems unlikely that enrichment factors more than a few 
hundred can be obtained in practice, and it must be remembered 
that the sample size requirement will increase by a factor at 
least as large as the enrichment factor. Again, the gain in maxi­
mum age determinable is a function of the logarithm of the 
independent variable so that appreciable extension of the method 
is accomplished only with great difficulty.



Nr. 6 13

Il is clear from a consideration of all the factors as represented 
on Figs. 5, 7, and 8 that, while the method can easily reach hack 
to periods of a few tens of thousands of years, further extension 
can result only from a very considerable expenditure of effort.

This fundamental limitation of the method derives directly 
from the exponential decay law, and it can be said in general 
that any dating method based on radioactive decay will have 
a range of applicability of approximately k-ti/2, where k is of 
the order of 10.

Sources of Error.
Contamination by other Radionuclides.

Contamination errors can result from the intrusion into the 
sample of carbon of a different specific activity or of other radio­
active species. One of the main purposes of the chemical treat­
ment of the sample before counting is to separate radiocarbon 
from all chemically different activities. The widespread occur­
rence of radium and its decay products as well as the high spe­
cific activity of these nuclides make them the principal source 
of such contamination. Most rocks contain of the order of 1()—12 
parts of radium, and soil contains 10—13 parts of radium20\ 
Therefore, samples consisting of many small pieces of material 
of large surface area can carry along with them comparatively 
large quantities of such activities. Fortunately, chemical separa­
tion is particularly easy. When the sample is burnt to CO2, 
radium and its solid decay products are left behind. However, 
the gaseous member of the decay chain (radon) is collected with 
the CO2 and, if not eliminated, will give rise to active deposit 
on the carbon sample. If the CO2 is precipitated as CaCO3, and 
the CO2 regenerated by acid treatment, contamination from this 
source can be eliminated.

Obviously, it is of prime importance that the reagents used 
during the preparation of elemental carbon from the sample be 
of extreme purity with respect to other radio-elements. The only 
criterion of adequate purity of all reagents used prior to mounting 
the sample is the attainment of a truly zero count from a dead 
sample such as coal or petroleum.
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Because of the extremely high adsorptive properties of the 
elemental carbon samples prepared by magnesium reduction 
(surface areas of the order of 200 m2/g) great care must be 
exercised to prevent recontamination. The principal danger is 
again radon, this time the radon which is present in the atmo­
sphere to the extent of 10—16 curics/cc20). Exposure of the sample 
to the air, especially when the sample is dried, should be kept 
to an absolute minimum. It has been observed, for example, 
that a sample which had been carefully mounted and had given a 
count equal to background, may show an activity above back­
ground if simply removed from the sample cylinder in the dry 
state and remounted.

It seems possible that contamination from aerial radon 
together with low level contamination of reagents may be the 
limiting factors preventing the extension of the method to the 
ultimate ages which seem possible from a consideration of errors 
due to counting statistics, only. As the activity of the sample 
decreases, it will probably be found that the errors indicated 
by analyses of duplicate samples prove to exceed the errors 
calculated on the basis of counting statistics.

For this reason, one should be cautious in accepting as 
practicable the limits of age which have been calculated as being 
accessible to the method on a statistical basis.

Contamination by Carbon of Different Specific Activity.
Contamination by carbon of different specific activity (i. e. 

different age) is a more difficult problem, since chemical methods 
may be of little or no use in rectifying the situation. Processes of 
contamination may be separated in two groups, viz. mechanical 
inclusion and exchange or chemical reactions. In all cases, the 
contamination may be by carbon older or younger than the 
sample.

Under mechanical inclusion may be grouped such events as 
penetration of a sample by rootlets of plants, crystallization of 
carbonates or deposition of organic compounds (e. g. humic 
acids) from solution onto or within a porous sample, and stirring 
and mixing of strata of different ages by the action of natural 
forces or by human or animal activity.
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Direct exchange of carbon atoms between chemical species, 
without a net chemical reaction, occurs, for example, in the 
following equilibrium

CO3 = (aq) + c*o2(g) c*o3 =(aq) + co2(g).

This type of reaction is improbable with organic compounds. 
The ease of exchange of BaC14O3 with atmospheric CO2 is well 
known22), but, on the other hand, Urey23) found shell carbonate 
capable of resisting oxygen exchange with dissolved carbonate 
over geologic periods. The results of Kulp9) indicate that finely 
divided carbonate in ocean sediments can maintain itself at a 
specific activity different from that of its environment for a period 
of at least 14,000 years (sample no. 107 B). Therefore, the situation 
looks encouraging for the use of shell carbonate as a dating 
material; however, the possibility of exchange under certain

Error in ¿he age ch a somp/e resa/h/rg 
from /rhrashon ch ¿nerh carhon

Fig. 9.

conditions remains, and research is planned to investigate this 
point by comparison of the specific activity of shell and wood 
from the same provenience and under different conditions of 
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exposure. (The problem of the initially different specific activities 
of shell due to isotopic fractionation is discussed below.)

While the strongly bound carbon in organic molecules is not 
subject to direct exchange, such molecules can serve as a sub­
strate for micro-organisms. For example, micro-organisms can 
break down cellulose and resynthesize other compounds. During

% Conbom/nabbon w/bb con bemgorarg corbon 
ob a somp/e ob a g/ven age neoessarg bo 
grocbuce a g/ben error br? ¿be age

Fig. 10.

this process, carbon of different specific activity, if present in 
the surrounding medium, can be incorporated into the new com­
pounds and invalidate measurements made indiscriminately on 
the whole mass. For this reason, it may be necessary in some 
cases to isolate the unaffected cellulose or lignin for dating purposes.

Another example of indirect exchange must be envisaged 
when aquatic plants grow in a hard water lake and have their 
specific activity displaced since the carbon they photosynthe­
size is derived partly from redissolved limestone15^

The effect on the measured age caused by intrusion of inert 
carbon into a sample is shown in Fig. 9. It is clear that an error 
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from this source of more than 1000 years can arise only if gross 
replacement (intrusion) of the carbon, i. e. amounting to more 
than 10 per cent, has occurred.

Fig. 10 shows the effect of contamination by contemporary 
carbon. In this case, the error is a function of the age of the 
sample. Each of the family of curves gives the degree of con­
tamination by contemporary carbon necessary to produce a 
given error as a function of the age of the sample. Errors of 
200, 500, 1000, and 2000 years are given. For example, to produce 
an error of 1000 years in the age of a 6000 year old sample, 
a contamination by 12 per cent with contemporary carbon is 
required. These curves may permit a decision as to the probability 
of a suspected error being due to this type of contamination.

Other Sources of Error.
Since the age of a sample is determined by the ratio of its 

activity to the activity of contemporary samples of the same 
material, it is unnecessary to make absolute specific activity 
determinations for age measurements. All that is required is the 
measurement of the counting rates of the unknown and of the 
reference sample under identical conditions. This is clear from 
the exponential decay law S = Soe~^T which, when solved 
explicitely for sample age T, gives

T = 18,500 log So/S,

So and S being the activities of materials of age zero and T, 
respectively.

Obviously, the efficiency factor for the counter, which would 
appear in this equation if conversion were made to absolute 
disintegration rates, would appear in both numerator and deno­
minator and, hence, cancel out. However, great care must be 
taken in the choice of the proper value of the contemporary 
activity, So.

Extensive measurements on contemporary samples4)’ 9) have 
shown, for example, that shell carbonate gives a counting rate 
11 per cent higher than wood, so that So for carbonate samples 

Dan.Mat.Fys.Medd. 27, no. 6. 2 
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is 1.11 times So for wood samples. A neglect of this difference 
would result in a dating error of some 900 years.

The analogous fractionation of carbon 13 has been known 
for some time24). The ratio C-12/C-13 is 91.8 for wood and 89.2 
for limestone, corresponding to a fractionation factor of 1.03 for 
C-13. While no further C-14 data are available, the C-13 measure­
ments indicate the possible existence of a group of material with 
still a different isotopic composition. This group is rather poorly 
characterized due to the few data, (single measurements on each 
of seven samples) but seems to consist of such diverse materials 
as weeds, algae, spores, peat, linseed oil, chinawood oil, and 
rubber, which show a C-12/C-13 ratio of about 92.8.

C-14 measurements on contemporary samples from similar 
sources are highly desirable from the point of view of our under­
standing of the detailed chemistry of the exchange reservoir, 
and they are equally essential for the dating of such materials.

Any error in the half life of radio-carbon will appear as the 
corresponding percentage error in the measured age of the 
sample. Since the estimated uncertainty of the best value for the 
half life of C-14 is less than one per cent4), this error is small 
compared with other uncertainties of the method and need be 
considered only in those cases where the sample is measured 
to an unusually high accuracy.

Improvements in Instrumentation.
Double Screen Wall Counter.

Since the long counting time required for obtaining sufficient 
precision is at present a limiting factor, it is desirable to introduce 
improvements which would reduce the required counting time. 
This has been accomplished in Copenhagen through the use of 
the double screen wall counter*.  In this instrument (Fig. 11), 
two independent detector units in a common envelope are used 
together with a triple sample cylinder. The sample is mounted

* The assistance of R. L. Schuch of the Los Alamos Scientific Laboratory 
in the design and construction of the double screen wall counter is gratefully 
acknowledged.
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on the middle cylinder, while the two end cylinders provide 
backgrounds. As in the conventional screen wall, the cylinder 
unit can be alternated between two positions. In one position, 
the sample is exposed to detector A (of. Fig. 11) and a background 
to detector B, in the other position, the sample is exposed to B 
and a background to A. Two advantages are obtained by the 
use of this system, first, the counting time necessary Io obtain

screen wo// A screen - wo// B

to ont/co/nc/äence
C/rcu/'t A 

to ont/co/ncrctence 
être ent Ô

0 5/0/6 20 cm

Doub/e screen-wo// coc/nber

9*

Fig. 1 I •

a given statistical accuracy is reduced by |, and second, simul­
taneous background and sample counts are obtained, whereby 
the effect of any temporal changes in the background is eliminated. 
Considerably less than twice the conventional equipment is 
required for the double screen wall system. Duplication of the 
mixing and the recording stages of the anti-coincidence circuit 
is necessary, but only one set of anti-coincidence counters is 
needed. The shield dimensions need be increased only slightly, 
since the counter length increases by only Moreover, the 
necessity for frequent alternation between the two positions is 
considerably reduced in the case of the double screen wall 
counter so that the complexity of an automatic sample changer 
is avoided.

Solution Scintillation Counter.
An alternative system of measurement suggested by J. Arnold 

in 1948 is based on the scintillation counter method. It is proposed 
to convert the carbon of the sample into the chemical form of a 
suitable solvent in which some material can be dissolved to form
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a system with high efficiency for the detection of the C-14 
^-particles. Some work has been done in this direction, bu I many 
technical difficulties must be solved before the method is proved 
Io be practical. Il is, however, worth considering the possibilities 
of this method in some detail, since it is difficult to imagine a 
system capable of giving a higher sample count combined with 
as low a background. The peculiar advantage of this system, 
which makes it so outstanding, is that it is able—theoretically at 
least—to use a sample in a condensed phase as a detector of 
nearly 100 per cent efficiency. Suppose, for example, that the 
carbon from the sample to be measured be converted to carbon 
disulfide or a similar organic liquid of a density about unity and 
containing of the order of 10 °/0 carbon. A small amount of a 
scintillator, e. g. terphenyl, is dissolved in this liquid sample 
and coincidence counts recorded from a pair of photomultiplier 
lubes triggered by scintillations from this system. On the assump­
tion of 100 per cent counting efficiency, <S() cc of carbon disulfide 
would give a counting rate of 120 counls/min. In the form of a 
cube, this volume will have a cross-sectional area of about 
18 cm2 and, therefore, might be expected to have a background 
of 0.03 counts/min. if background could be reduced as efficiently 
as in the case of the screen wall counter.

With such an idealized instrument the maximum age determin­
able as defined above becomes 58,000 years.

The principal advantages of the system are its extreme com­
pactness, thus eliminating the need for a massive shield, and the 
great economy of counting time obtained for samples of reason­
able age. On the other hand, the gain in the maximum age determin­
able while significant is not spectacular.

fhe authors wish to express their gratitude Io Professor 
P. Bbandt Reiibebg, head of (be Zoophysiological Laboratory, 
where* lhe dating apparatus is installed, for his hospitality and 
kind interest in the work.

fhe Copenhagen “dating project” was initiated jointly by 
members of lhe Danish National Museum, 11k* Danish Geological 
Survey (D.G.U.), and lhe Zoophysiological Laboratory. Il is 
supported financially by lhe Carlsberg Poundalion whose sponsor­
ship is gratefully acknowledged.
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Summary.
A detailed comparison of the screen wall counter with a gas 

sample counter with respect to the problems of radio-carbon 
dating is given. Curves are presented showing the accuracy and 
range of the method as functions of the background rate and the 
counting time. The errors due to intrusion of extraneous carbon 
are presented and discussed and certain improvements in the 
method are described.

Zoophysiological Laboratory, University of Copenhagen.
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Introduction.

In recent years, important progress in the field of quantum 
electrodynamics has been obtained by introducing the idea 

of charge and mass renormalization(1). According to this method, 
the usual field equations in quantum electrodynamics, which are 
obtained from the classical equations by a correspondence ar­
gument and which contain the well known divergencies, arc 
transformed by a canonical transformation into a set of equations 
in which only the observable renormalized mass and charge of 
the particles occur. Since the whole procedure is relativistically 
invariant one can expect the transformed equations to give a 
correct description of electromagnetic phenomena, and this ex­
pectation has been decisively confirmed by the remarkable ac­
curacy with which this theory allows to calculate the Lamb shift 
as well as by the predictions of new effects like the anomalous 
magnetic moment on lhe basis of the theory.

The application of the renormalization method to the case of 
nucleons in interaction with mesons seems, however, in some 
cases to meet with serious difficulties^. Further, it should be 
kept in mind that the method itself, in spite of its practical success, 
is not entirely satisfactory from a theoretical point of view, since 
the transformation leading to the renormalized equations is not 
a mathematically well defined unitary transformation, as is 
obvious from the fact that its purpose is to remove infinities. 
It would therefore be more attractive, at least in the case of 
nucleons in interaction with meson fields, to replace the usual 
field equations by slightly modified equations which, from the 
beginning, are free of divergencies.

Since the early times of quantum electrodynamics, it has 
been clear that an essential part of the divergencies inherent in 

1*



4 Nr. 7

the usual field theories are due to the use of the point particle 
picture of the elementary particles. Instead of taking the wave 
functions of the interacting fields at the same space-time point 
in the interaction Lagrangian, it has, therefore, repeatedly been 
suggested to introduce a form factor describing a kind of non­
localized interaction of the fields*4, 5’ 6’8). It does not seem 
possible, however, inside the frame of usual quantum mechanics, 
to introduce such a form factor in a relativistically invariant 
way, and for many years all such attempts were regarded as 
impossible.

In the meantime, the S-matrix theory was developed by 
Heisenberg*3). His starting point was the idea that the frame­
work of ordinary quantum mechanics might be too narrow to 
comprise a consistent field theory and that the difficulties could 
be removed only by giving up to some extent the more detailed 
description of the elementary processes, which is claimed to be 
possible in the usual quantum mechanics. The directly observ­
able quantities like the cross-sections for the various elementary 
processes are fully described by the S-matrix and one might take 
the extreme point of view that a field theory should be considered 
complete if it only allows of a unique determination fo the S- 
matrix.

In the present paper, it is shown that the introduction of a 
form factor in the interaction between particles of spin one half 
(nucleons) and pseudoscalar mesons leads to a consistent S-matrix 
theory with correspondence to the usual field theory. Section 1 
contains the general formalism including the field equations as 
well as the expressions for the total energy and momentum of 
the system. These quantities are in general not constants of the 
motion but, since they arc conserved over infinite time intervals, 
they may be regarded as constants of collision in the sense of 
the S-matrix theory. In this section is also given a brief discussion 
of the general properties of the form factor following from the 
requirements of relativity, reality, and correspondence. A detailed 
discussion of the consequences of these requirements is post­
poned to Section 4.

In the following section, the S-matrix is derived to the second 
order in the coupling constants by means of the extension of 
the method of Yang and Feldman*10) given by Bloch*'\ In 
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Section 3, the expressions for the self-energies of mesons and 
nucleons are derived from the one-particle part of the S-matrix. 
The necessary mathematical tools are found in the Appendixes.

The values of the self-energies will, of course, depend on the 
choice of the form factor and, in Section 4, it is shown that the 
form factor can be chosen in accordance with the general con­
ditions stated above in such a way that the self-energies are 
finite and small.

The correspondence requirement implies that the present 
formalism must be identical with the conventional field theory 
when the fields are slowly varying. The definition of a slowly 
varying field involves the introduction of a constant A of the 
dimension of a length which also enters into the expression for 
the form factor in such a way that we get all the results of the 
usual theory for processes which take place in regions of an 
extension large compared with Å. This means that, for instance, 
the second order cross-sections for nucleon-nucleon or nucleon­
meson scattering are the same as in the usual meson theory as 
long as the transferred momentum is smaller than 71/Â in the 
centre of mass system. For high energy processes, however, the 
form factor causes deviations from the usual theory and, in 
principle, the results of high energy scattering experiments could 
be used for an empirical determination of the form factor. Al 
the moment, we have no theory which would allow of a closer 
determination of the form factor and we do not even know if 
the constant Â is a universal constant^ a). A theory of the present 
type should perhaps rather be regarded as an approximation to 
a more general theory applicable to processes in which only 
particles of the kind considered play an essential role. Hence, 
the introduction of a form factor may be looked upon as a crude 
way of taking into account the influence of the external world 
on the system and it must be expected that the form of the form 
factor will depend on the particular system considered. Thus, 
a theory of the form factor itself will require the development 
of a unified theory of all elementary particles. It is an open 
question whether this general theory can be developed inside 
the frame of ordinary quantum mechanics.

In Section 5, some of the most striking differences between 
the present formalism and ordinary quantum mechanics are 
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discussed, in particular as regards their physical interpretation 
and the transformation theory. In the present theory, a wider 
class of transformations—the quasi-canonical transformations— 
take over the role of the canonical transformations which retain 
their importance only in the limit of slowly varying fields. It is 
shown that the theory can be made gauge invariant in the sense 
that a gauge transformation is equivalent to a quasi-canonical 
transformation, which means that a gauge transformation has no 
effect on the physical predictions derived from the theorv.

Finally, in Section 6, it is shown that the introduction of the 
form factor also makes the vacuum polarization finite to the 
approximation considered. In the present paper, we have dis­
cussed the consequences of the theory for scattering processes 
only. In a subsequent paper, we hope to deal with the properties 
of composed systems of elementary particles on the basis of this 
theory. Since the introduction of the form factor effectively means 
a cut-off, it may be expected that we can avoid the difficulties 
which, in the usual theory of nuclear forces, arise from the 
strong singularities of the potentials.



1. General formalism.

In this paragraph, we shall consider the general case of spin 
one-half particles (nucleons) in interaction with an arbitrary 
meson field of integer spin. Let 7; (ar) be the field variable of the 
nucleon field, and let the meson field be described by one or 
several real field variables ua(x). We assume that the field 
equations can be derived from a variational principle

<5 | \{LN(ar) + LM(ar)} dx + Lint (af, ar", af") dx' dx" dx'" = 0,

where dx is the volume element in Minkowski space, dx = 
dx^dx^dx^dx'Q, ar0 — —i ar4. LN and LM refer to the free nucleon 
and meson fields, respectively, and Lint describes the non­
localized interaction between the fields. Thus, using units /? = 1, 
e = 1,

m (ÿynd/Liy’ — dnÿ’-y^) + My>y)

= ~-^{d/in-d flii + m2u2}

Lint = —JTÿy, (ar') ^r(-r',x",x"') ua (ar") y^,, (3)
m

where (#', x", x"') in general is a combination of the Dirac 
matrices depending on three different space-time points. In the 
following, we shall take 0 as a product of a one-particle matrix 
operator and a scalar form factor F depending on the coordinates 
of the three space-time points, i. e.

= M“r-F(ar',x",ar/"). (4)
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For simplicity, we write

¿int = — ^(x')(P(x',x",x'")u(x")yj(x'"). (5)

using vector and tensor notations for the spinor index £ and the a. 
Obviously, we have 0/z — zz0. The matrix A is the usual one- 
particle operator occurring in the expression for the interaction 
Langrangian of the corresponding local theory which thus is a 
special case of the present formalism with

F = Ö (x' — x") ó (x' — x'"). (6)

In the case of neutral pseudoscalar mesons, for instance, we have

(7)

where and g2 are the coupling constants of the pseudo-scalar 
and the pseudo-vector interactions, respectively. In the case of 
scalar mesons, we have simply A = zy-l. When we deal with 
charged and neutral mesons in symmetrical interaction with the 
nucleons, these expressions should be multiplied by the isotopic 
spin operator Ta, a — 1,2,3.

As shown by C. Bloch(7), Yukawa’s theory of non-local fields 
suggests the following expression for the form factor

where the Fourier transform G(L,l) is a function only of the 
quantity 772 defined by

(9)

Here, /J = denotes the scalar product of the four-vectors 
and lfi. For time-like L, the Fourier transform G is in this 

theory given by

G(L,l) = G (17) = (10)

where X is a constant of the dimension of a length.
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As it will be seen later, the choice of the particular form factor 
(8), (10) does not lead to a convergent theory. We shall therefore 
try to develop the theory, as far as possible using a largely arbi­
trary form factor restricted only by general physical arguments.

In the first place, F must be an invariant by arbitrary dis­
placements of the origin of the system of space-time coordinates. 
This condition is conveniently expressed in terms of the Fourier 
transform F(ZX, Z2, Z3) of the function F (x', x", x"'). One sees al 
once that this condition requires F(Z\ Z2, Z3) to contain a factor 
Ô (I1 + Z2 + Z3). Accordingly, putting F (I1, P, F) = G (l1, Z3) Ô(P + Z2 + Z3), 
we get

F(æ',x",^"') = (2 tc)—8 Ç G (Z1, Z3)

• exp i{Px' + Fx" — (Z1 + Z3)x"} dPdF.

Next, \ Lint dx'dx"dx"' must be Hermitian, which

1 (x , x , x ) = r * (<r , x ,rr ).

In the Fourier representation, this is expressed by

G(Z\ Z3) = G*(—Z3, — Z1).

>(H)

requires

(12)

(13)

(14)

(15)

a

(16)

typea
has no

While the dependence of F on the variable r describes 
of internal coupling of the nucleon field to itself, which 
classical analogue, the dependence on R is just what one would 

Obviously, as F has to be an invariant with respect to Lorentz 
transformations, G must have the same property. Sometimes it is 
convenient to introduce new variables of integration

Z1 —Z2L = Z1 + Z3, / _

Il I IIIx , r = x —x

into the expression (11), which gives

•expíLí- -x") + /(Z-x'dL
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expect from analogy with a classical theory of extended interaction 
between the two types of particles. It will appear, however, that 
the dependence on r is actually most essential for the convergence 
of the theory.

Finally, it must be required that the theory of non-localized 
interaction is equivalent to the usual field theory for sufficiently 
slowly varying fields. This means that the form factor must 
have the same effect as the ó-l'unctions of the local theory in any 
expressions containing slowly varying fields, only.

In Section 4, we shall give a precise definition of what we 
understand by slowly varying fields as well as a detailed dis­
cussion of the restrictions imposed on the form factor from the 
correspondence requirement mentioned above. The definition 
of slowly varying fields involves the introduction of a new con­
stant X into the theory, which conveniently may be taken of the 
dimension of a length and which one would expect to be of the 
order of magnitude of, or smaller than, the range of nuclear 
forces. It will appear that the function F can be chosen to depend 
on Â in such a way that the limiting cases of 0 and of slowly 
varying fields become identical. Hence, we have

lim F (a?', x" ,x'") = ô (x' — x") Ô (x' —x"') (17)
2->0

and, for instance,

{u(x,')y>(x''')F(x',x'',x''')dx''dx''' = u(x')ip(x') (18) 

for slowly varying u and y.
The equations of motion obtained from the variational 

principle (1) are

(yixdfi + M) y (x') = — \ 0 (x’ ,x", x'") u (x") ip (æ"') dx"dx'" 
(19)

(□" — m2) u (x"} — ^ip (x') 0 (x', x",x"r) ip (x'") dx'dx'".

On account of the non-local character of the interaction, the four- 
current

zV(.x) »^(æ) (20)

does not satisfy the continuity equation. In fact, by the usual 
procedure, one obtains from the first equation (19)
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= — i (x) & (x, x' ', x' " ) ii(x' ') ip (x' ") dx' ' dx" '

— (,r') d> (x',x",x) u (x") ip (.r) ør'ør"|.
(21)

Integrating this equation over the whole four-dimensional space, 
the right hand side vanishes identically. Hence, we get

The quantity /I N — ^ip^ ip d^x is equal to the difference between 

the total number of nucleons and antinucleons, and equation (22) 
demonstrates that this number is strictly conserved over infinitely 
large time intervals. This is in general not the case for finite time 
intervals, where a conservation theorem holds in the limit of 
slowly varying fields, only. In fact, in this limit we may apply 
(18) on the right hand side of (21) and the two terms cancel.

The situation is somewhat similar in the case of energy and 
momentum conservation. The invariance of the Lagrangian 
with respect to displacements of the origin of the system of space­
time coordinates leads again only to the identification of constants 
of collision. So far treating the field variables as c-numbers we 
obtain by the usual procedure

dv t($dx — ^ d'fl ip (x) ■ ø (x',x",x"') u (.r") y) (x'")

+ ÿ>(x') ø (x',x",x"') dfj, u (x") ip (x"')

+ ïp (x') 0 (x', x", x" ' ) u (x") d^i ip (x") J dx' dx" dx" ' — 0,

(23)

where is the usual energy-momentum tensor of the free fields*)

á/jv(yy}d¡y d?yy?y)

- ô^Mipip + dvii• d/iii --¿^(d^i-dyi + m2zz2).
(24)

This result can also be verified directly from the equations (19), 
from which it follows that

*) For quantized fields, the term dvudnU should of course be replaced by the 
Hermitian expression J (dvud^u. + d^udvu), which involves a corresponding change 
in the second term on the right hand side of (25).
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eG /JS Gr) = (x) • ø (x, *"') u (x" ) y, (x'") dx" dx'"

+ \ ÿ) (x') 0 (x',x,x"') dfi u (x) y> (x'") dx' dx'"

+ (x') 0 (x', x" ,x) u (x") d/t y’ (x) dx' dx".

(25)

Integrating this equation over the whole domain of four-dimen­
sional space, one obtains again (23). The invariance of the inter­
action Lagrangian density (3) now allows (23) to be written in 
the form of an integral of a four-dimensional divergence of a 
certain tensor tllv. From the invariance of, for instance,

U?(2) = —{ÿ(x')<P(x',x,x"') ii(x)y)(x"') dx'dx"' (26) 

and from the fact that the form factor is form-invariant, it fol­
lows that 

(27)

(28)
where

G(S (-r) = $2 (x) + 0/lv^(x). (29)

col-

(30)i 7*

Thus, the following Hermitian quantities are constants of 
lision

(7/z oC(2) (x) d(3) x/ (x) rZ<3>^ = G^-iô^

d/À<£(2) = - ^d/ilyi{x')-(P(x',x,x"')ii(x)y>(x"')

+ ÿ (x') 0 (x',x,x"') u (x) ip (x'")

+ ÿ> (x') <t> (x', x, x'") u (x) dfi yi (x'") j dx' dx'"

and, hence, (23) can be written in the form

and may be interpreted as the total momentum and energy 
of the field. If we had chosen, instead of (26), one of the two 
other possible interaction Lagrangian densities,

= — Ç y) (x) 0 (x,x",x"') u (x") y> (x"') dx" dx'"

— — \ ÿ) (x') <P (x' ,x", x) u (x") y> (x) dx' dx"
(31)
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we would, instead of (28), have obtained

= 0, \drl$dx = 0, (32)

respectively, where

t\ll = + + (33)

However, the requirement that the energy-momentum tensor must 
be Hermitian reduces the number of possible choices of this tensor 
to one of the two

= r2(tÿi + tÿi) = $2 + v|œ<1> + Z<3))

® = /JS + Vd*2».

2. Derivation of the 5-matrix.

For the derivation of the S-matrix we shall use the method 
developed by Yang and Feldman and by Kâllén(10). As shown 
in the Appendix A, the field equations (1.11) are equivalent to 
the integral equations

It may be remarked that any of these becomes identical with 
the usual expression of the energy-momentum tensor in the limits 
of A -> 0 or of slowly varying fields.

From the preceding discussion it is clear that the present 
formalism is entirely different from the Hamiltonian scheme of 
ordinary quantum mechanics. This is obvious from the fact that 
the non-local quantities corresponding to the total energy and 
momentum of the system are in general not constants of motion. 
However, the fact that these quantities are conserved over the 
infinite time interval — oo < t < + x suggests that Gfi may be re­
garded as constants of collision in the sense of the S-matrix theory 
and that a consistent treatment of this formalism can be found 
inside the frame of Heisenberg’s S-matrix theory. The present 
theory thus oilers an example of a case in which the S-matrix 
may be calculated without any reference to an underlying Hamil­
tonian scheme.

(34)
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V’(æ) = V’G. &) + \Sm(x,x')ø(x',x",x"') u(x") yi(x"') dx' dx" dx"' 

u(x) = zz(x, o) — {ÿ(x')&(x',x" ,x"') A°m(x,x")y)(x"') dx' dx" dx'",

where yi (x, er) and u(x, er) are the free fields coinciding with y> (x) 
and zz(x) on a spacedike surface <r. S%r and are Green’s 
functions defined by (A. 3) and (A. 32) and corresponding to the 
mass values M and in, respectively. Taking cr in the infinite past, 
the functions and A^n become identical with the corresponding 
retarded Green’s functions and the equations (1), in this limit, are

V’(æ) = y>in(x) + (x— x'} <P (x ,x",x"’} ii(x")y)(x'"') dx'dx" dx"'

u(x) = u{n{x) — \^(x'}<d>(x',x",x'")Ar̂ (x—x"}y)(x'"}dx'dx"dx"'.

These equations may be considered as definitions of the in-fields 
y>m and zzln. As a consequence of (A. 7),

yim (x) = lim y> (x, a) 
a -> — oc

zz1“ (x) = lim zz (x, cr)
a -> — oc

(3)

and the in-fields satisfy the free field equations. 
Similarly, we may define the out-fields by

y»out (x) = lim (x, cr)
O’ -> + oc

zzout(x) = lim zz (x, cr)
O' -> + oc

G)

or, alternatively, by the equations

G*) = Y,out (x) + (x — x') 0 (x', x", x"') n (x") y> (x"') dx' dx" dx"’ 

u(x) = nout(x) — ^yi(x')d>(x',x",x'")A^(x-x")yi(x"')dx'dx"dx'".

Hence, in a certain sense, the in- and out-fields may be regarded 
as the free fields which coincide with the actual fields at t = — <x 
and t = + oo , respectively, thus representing the ingoing and out­
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going fields. By solving the equations (2) we obtain the actual 
fields in terms of the in-fields. Further, subtracting (5) from (2), 
we get an expression for the out-fields in terms of the in-fields 
and the actual fields and, eventually, in terms of the in-fields. 
Using (A. 20), the equations obtained from (5) and (2) are

V>ou,(0) = ^>ln(0) —^SM(0 —1) 0(1, 2, 3)n(2)y>(3) d(123) 

iiout(0) = uin(O) + U(l)0(l,2,3)zl„(O-2)v>(3)d(123), 
(6)

where we use the symbols 0, 1, 2, 3, ... for x, x', x", x'", . . . 
and d(123) = dx'dx"dx'".

Following Yang and Feldman(10) and Blocii('\ the quan­
tization of the field variables can now be performed by intro­
duction of commutation relations for the in-field variables. It 
is then clear from the preceding discussion that also the com­
mutation relations for the actual fields and the out-fields are 
determined. Since the in-fields satisfy the homogeneous wave 
equations, we may consistently assume the usual free field com­
mutation relations to hold for these fields, viz.

O), —x')

[u,n(æ), uin(æ')] = zdm(æ —x').

It has been shown by Blocii(/) that then also the out-fields 
satisfy the commutation relations (7). Consequently, the in- and 
out-fields must be connected by a unitary transformation

^out = 5-1^5

zzout =

sis = SSf = 1 .

(8)

On account of the interpretation of the y»out, zzout and ^in, 
zz,n as the variables describing the outgoing and ingoing fields, 
respectively, the unitary matrix A is the Heisenberg S-matrix 
of the svstem(9a).
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It is convenient to introduce a Hermitian matrix 77 by

S = eir¡ (9)

and the problem is now to determine tj from (8) and (9) and 
the field equations. To solve the field equations we have to take 
recourse to an iteration method in which the in-fields are chosen 
as the zero order approximation, and we shall take into account 
the interaction to the second order in the coupling constants 
contained in the function 0. To the first order, we find from (6)

yout(0) = ^in(0) —^M(0 —l)ø(l,2,3)uin(2)yin(3)d(123) 

Uout (0) = iZin (0) + Ç (1) 0 (1, 2, 3) Jm (0 — 2) v>in (3) d(123).
(10)

However, on account of the conservation of energy and momen­
tum, no real first order processes can occur. Consequently, the 
first order term in 77 and, therefore, also the first order cor­
rections to the out-fields, must be zero. This can also easily be 
verified directly by evaluation of the integrals on the right hand 
side of (10) in momentum space. Therefore, since

(ID

the actual fields calculated to the first order from (2) mav be 
written

(0) = Vin (0) + (.S'M ((I — 1 ) ø (1,2, 3) uln(2) y>‘" (3) d(123) 

u(0) = i1ln(0)-Cn(l)®(1.2,3)3m(0-2)y>ln(3)d(123).
•J

(12)

Using (12) in (6) we finally get the expressions for the out-fields 
in terms of the in-fields to the second order in the coupling 
constants
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„«“<(0) = y* (0) - J SM (0-1) 0(1, 2, 3) u"'(2)SM (3 -4)

X 0 (4, 5, 6) u1“ (5) y>la (0) <4(1... 6)

+ isM (0-1) 0(1, 2, 3)
«/

x{v>in (4) 0 (4, 5, 6) Âm (2 — 5) yin (6)) ipin (3) d(l . . . 6)

<out(0) = uin(0) + ^in(l)0(l,2,3)dm(0-2)

XSM ( 3 4) <Z> (4, 5, 6) uin (5) ipm (6) c?(l. . . 6)

+ ( ^in (4) 0 (4, 5, 6) um (5) 

xSM(6-l)0(l,2,3)dm(O-2)v?n(3)d(l.. .6).

(13)

Since the first order term in vanishes, the connection between 
the in-fields and out-fields expressed by (8) and (9) can, to the 
second approximation, be written

yiout = ^in + |[^^inl 

U°ut = üin + l^ uinj
(14)

Comparing (13) and (14), and using the free field commutation 
relations (7) for the in-fields, it is easily verified that the ^-matrix 
in this approximation is given by

>1 = -Ui',(l)0(l,2,3)«i'‘(2)SJ/(3-4)
€/

X0 (4, 5, 6) um (5) ipm (6) d (1.... 6)

x{ÿ>in (4) 0 (4, 5, 6) d (2 — 5) v?1 (6)} ^in (3) d(l.... 6).

(15)

In this approximation,

Dan.Mat.Fys.Medd. 27, no.7.
irj — S — 1. (16)

2
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According to the ¿¡-matrix theory(3),(9), the matrix 5—1 is a 
product of two factors, the first of which is a d-function taking 
care of the conservation of energy and momentum while the 
square of the second directly gives the cross-sections for the 
possible real processes.

3. Calculation of the matrix elements of r¡.

Since the //-matrix given by (2.15) contains in-fields only we 
shall, in this section, omit the subscript “in” attached to the field 
variables, and ip, ip and u then denote free field wave functions 
satisfying the commutation relations (2.7). These functions may 
in a relativistically invariant way be decomposed into positive 
and negative frequency parts which then, in the usual way, are 
interpreted as annihilation and creation operators, respectively. 
The non-vanishing commutators (anticommutators) between 
these variables are the following

(.r), ipY (x')} = — iS^-) (.r — .r' )

^ip(r}(x), ^)(.r')J - zS^?(æ x) 

u^ix'Y = iô ,zß+)(.r— x'),
a x 7 cc y 7 ] ecu x

(1)

where, for simplicity, we use the notations ¿> and A instead of 
SM and Am. For the definitions of the various Green’s functions 
introduced here see Appendix A. A-functions referring to the 
nucleon mass will be explicitly written AM. The vacuum state 
vector 10) is now defined by

0> = 0 <0 = 0

|0> = 0 <0 = o

0> = 0 <0 u(-> = 0.

In the Appendix B, the matrix elements of the various combina­
tions of wave functions occurring in r¡ have been calculated.
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From (B.5) it follows that the vacuum expectation value of 
the nucleon source density occurring in the interaction between 
nucleons and pseudoscalar mesons is zero. For instance,

<0 I zy¡(l)y5^(3) I 0> = z’Tr y5St_)(3 1) = 0, (3)

where we have used Tr y5 — Try8y„ = 0. This is a particularly 
simple feature of the pseudoscalar theory. In the scalar meson 
theory, for instance, the necessary vanishing of the vacuum 
expectation value of the source density creating the meson field 
would be obtained only by a suitable symmetrization procedure 
analogous to Heisenberg’s rule in quantum electrodynamics.

We shall now confine ourselves to the case of pseudoscalar 
neutral mesons in pseudoscalar interaction with the nucleons 
and our task will be first to derive the various matrix elements 
of rp

a) The self-energy of the meson. As is well known, the ^-matrix 
contains non-vanishing matrix elements corresponding to tran­
sitions between two states in which only one meson and no 
nucleons are present. Denoting the momenta of the mesons in 
the initial and final states by p' and p", respectively, one finds 
that the matrix element in question is of the form

where dm2 is an invariant constant and co is defined by

co = I p2 + m2. (5)

A term of this form would also arise from an additional term in 
the interaction Lagrangian density

0Linl = ôm2u2. (6)

Thus, ôm2 must be interpreted as the contribution to the square 
of the meson mass due to the interaction with the nucleons. In 
the local theory this contribution turns out to be infinite. How­
ever, as it will be shown below, it is possible to choose the form 
factor in accordance with the general requirements outlined in 

2* 
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Section 2 in such a way that the correction to the meson mass 
comes out finite and small compared with the actual meson mass.

To calculate ôm2 we consider the one particle part of the 
matrix element of between the two states mentioned above 
with the corresponding state vectors |p'> and |p">. In the one 
particle part

<p"Hi)Ip'> = <°HI°»|p'> (7)

the contribution from the vacuum fluctuations, being of no
physical significance, has been subtracted. In the case 
sidered, the form factor can, according to (1.7), with g2 = 
written

0 = igy5F(1 , 2, 3)

con-
fl be

(8)
and the 77-matrix given by (2.15) becomes

+ Pn- 
where

>/i = tf2 2, 3)F(4, 5, 6)<7(1 . . .6)

Xÿi (1) y5S (3 — 4) y5 V) (6) u (2) u (5)

//H = -|^F(l,2,3)F(4,5,6)d(1...6)

(9)

(10)

(1) y5 [ip (4) y5y (6)] (3) Z1 (2 — 5).

Since rjn does not contribute to (7), we get

<P"H(i)|p'> = /Çf(1,2,3)F(4, 5, 6)d(l . . .6) 

x< 0 I ÿ ( 1) y5S (3 — 4) ybip (6) | 0 > < p " | [u (2) u (5)](1)\p ’ >.

The nucleon vacuum expectation value can be evaluated, using 
(B. 5),

< 0 I ip (1) y5S (3 — 4) y5ip (6) | 0 >

= Z(nS(3-4)n);,5t(-<>fi(ß -i))
Cl?6

= i Tr (y,,^ + JZ) (7,46)-M)3m (3 - 4) (6-1)
(12)

= 4 i - .V2) (3 - 4) (6 - 1 ).
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The one particle part of the meson matrix element is directly 
found in (B. 26)

<p"| [u(2)zz(5)](1)|p'> = |(2tt) 3 ¡7=5
2 [/co co (13)

Inserting (12) and (13) into (11), and using the Fourier expansions 
of ZlM, (A. 26), (A. 28), and F (1.15), we find that the first of 
the two parts of the matrix element (11) arising from the first 
of the two terms in (13) is

2 g2 (2 %)“26 . \ (d(1. . .6)d (Z1/3/4/6) dK’dK
|/ CO CO

X G (P, l3) G (P, P) ^¿7^ 0 1 2(g)
Xexp i {P 1 + I3 3 - (Z1 + I3) 2 + Z44 + P6 — (P + P) 5}

Xexp i (K' (3 — 4) + K (6 — 1) + p' 5 —p" 2}.

(14)

Performing the integration over all the variables except K we 
obtain

2 g2 (2 n/ 2) 0(p -p")
I

0)

{dK-\G(K, — K—p')\2
•J

(p' + K)K + M2
Q)' + K)2 + M2

ô (K2 + 3/2) l-e(Æ)
2

(15)

The other part of (11), arising from the second term in (13), 
is obtained from (15) by the transformation

(16)

Changing the variable of integration K into —K, one finds im­
mediately, by means of the symmetry property (1.13) of G, that 
this part is identical with (15) except for a change of sign in 
e(Iv). Hence, we get
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<?" I ?Ai) I?'> = ~,P bin2, (17)
11 O)

where the correction to the square of the meson mass is

dm2 = _ 2-^2(2 7t)"2^î/Æ-|G(A; A — //) I2

(// + Æ) K + J/2
(//+A)2 + J/2

Ô(A2 + M2).
(18)

In the local limit G = 1 and we obtain the well known result 
that bin2 is quadratically divergent. We also see that a G (I1,13), 
depending on I1 + P only, cannot bring about convergence, 
since in this case the form factor occurring in (18) is independent 
of the variable of integration. Finally, it is easily seen that the 
choice (1.10) of the form factor following from Bloch’s version 
of Yukawa’s theory only reduces the degree of divergence to a 
logarithmic one.

b) The self-energy of the nucleon. In the same way, we now 
consider the matrix elements of the one particle part of g cor­
responding to a transition from a state | cr'P' ) with one nucleon 
present with wave vector P' and spin o' to a state \a"P"y and 
we obtain a result of the form

Here, /), and I are defined in terms of the spinor plane wave 
amplitudes (p. 47) by

.//z =--(o'0, cr'; ?') = Î» pP'P') Yu» pPP')

I = I (a", a'; P') = u (er" P') i> (a' P').
(20)

Further, bM and bAu are a scalar and a four-vector, respectively, 
given by

bAfl = ódI/y + óAII/í |

bM = bMv +bMu, J
where
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,2 2

(2%)3Î

2

from an

(23)

(24)

Such a term corresponds to an additional term in the energy 
of the free particle field

0M}

A term of the type (19) would appear in the S-matrix 
additional term in the interaction part of the Lagrangian of the 
form

¡ 02)

(2n)’4 S

4. General properties of the form factor. Convergence of the 
theory to the second order.

In this section, we shall investigate the general properties of 
the form factor following from the correspondence requirement 
briefly mentioned in Section 1, and we shall show that it is pos-

e(K)
2

¿/.¡nt = iyjy^öAfl +

Hence, ÔM should be considered as the contribution to the nu­
cleon mass due to the interaction with the meson field, while 
t)A and <5A0 represent a constant self-potential.
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sible to choose the form factor in accordance with the result of 
this investigation in such a way that no divergencies occur in the 
theory to the second order approximation in the coupling con­
stants. It will be our first task to give a precise formulation of 
what we understand by a slowly varying field. It is clear that a 
field variable which could be considered slowly varying at one 
time or, more generally, in the neighbourhood of a space-like 
surface a will not retain this property throughout the whole 
space-time. Accordingly, the definition of the slowly varying 
field must be given with reference to a certain surface a. The 
field variables will now be called slowly varying on ff if, in a 
suitably chosen Lorentz system, the free field functions ip (x, ff) 
and u (x, ff) which coincide with ip (.r) and u (æ) on a may be re­
garded as built up of plane waves involving only momenta small

is given a relativistically invariant meaning, but it may be re­
marked that the expression slowly varying then is somewhat 
misleading, since it is obvious that slowly varying fields are not 
composed of waves corresponding to small momenta, only, in 
every Lorentz system.

The correspondence with the local theory now requires that 
the evolution of the thus defined slowly varying fields in the neigh­
bourhood of the surface ff is the same as in the usual theory. 
The value of y» (a*) for x on an infinitesimally displaced surface 
ff' is given by (2.1), and since

S° (x,x') (1)

is zero if x' is outside the domain in four-space between the 
neighbouring surfaces ff and ff', the integral on the right hand 
side of (2.1) is small of the first order in the distance between 
ff and ff'. Neglecting terms of the second order in this distance, 
the usual iteration procedure for solving (2.1) gives for x in 
the neighbourhood of ff

y (a?) = y(a?, cr) + { (x,x') (x',x'',x"') u (x", ff) ip(x'", ff) dx'dx"dx'''

ii (x) = 11 (x, ff) — \ ÿ> (x', ff) &(x',x",x"') z1æ(.r, x") ip (x'", ff) dx'dx"dx'". 
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Comparing the first of these equations with the corresponding 
local equation we see that the form factor must satisfy the con­
dition

F(x', x", x'") u (x"> cr) ip (æ", c?) dx' dx" = u (x', (?) ip (x', (?) | (3) 

for arbitrary, slowly varying ip and u. Introducing the Fourier 
expansions of the function F (1.15) in (3), we obtain

\ G (P + p, —P) u (p, (?) ip (P, (?) el (p + ’dx' dpdP =

— \ u (p, (?) ip (P, (?) el (p+ id x'dpdP, (4)

where u(p, (?), ip(P,(?) are the Fourier transforms of u(x,a), 
y> (x, (?), respectively.

Hence, G must satisfy the condition

G(P + p, —P) = 1 (5)

whenever P and p are four-momenta entering in the Fourier 
expansions of the slowly varying ip and u. From the Hermitian 
conjugate equation of (4) we get similarly, using (1.13),

G*(Z1,Z3) = G(—Z3, — Z1)
and

u*(p) = u(—p),
the further condition

G(P,p-P) = l. (6)

Finally, the second equation (2) leads to the condition

G(P',-P")=1 (7)

which must hold for any two four-momenta P11 and P1 occurring 
in the Fourier expansions of the slowly varying nucleon wave 
function.

If the form factor G is assumed to be real we have the 
symmetry relation

G (l1, Z3) = G(—Z3, — Z1) (8)
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and, since G must be an invariant, it can be a function of the 
three invariants

(9)

only. We shall show, however, that it is possible to obtain con­
vergence with a G depending only on one variable. The cal­
culation of the correction of the meson mass (3.18) shows that 
this variable cannot be (Z1 + I3)2. Similarly, the last variable in 
(9) is excluded since it is constant and in fact zero for the mo­
menta entering in the last term of the expression for the self­
energy of the nucleons (3.22). Accordingly, the only possibility 
left is to choose G as a function of [(/x — Z3)/2]2 or a combination 
of the quantities (9) containing [(Z1—Z3)/2]2. It was found con­
venient to choose the combination

IJ2
(10)

which is identical with H2 entering in (1.10).
For the I1 and Z3 values in condition (7), we have

/P" + P'\2
n2(P, z3) = y" I • (11)

If Pq and Po have the same sign, i. e. if P" and P' are wave vectors 
corresponding to the same type of particles, P" + P' is time-like. 
In the rest system of the two particles, where P" = — P' = AP,

772 = — [(dpV + M2]. (12)

On the other hand, if P" and P' are wave vectors of an anti­
nucleon and a nucleon, — P" + P' is lime-like and in the rest 

->
system of the two particles, where now P" = P’ = AP, IT2 is

IP2 (13)

The condition (7) now requires that G — 1 for values of IT2 
corresponding to (AP)2 small compared with 1/Â2. This suggests 
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the following choice of a simple form factor depending on one
variable, only,

G (IT2) = 1 for

-M2—1<7Z2< —Å/2 
z2

0 < //2 < ~
Á2

(14)

and zero outside these intervals. For the I1 and I3 occurring in 
the conditions (5) and (6), we have

(15)

(16)

Hence, the choice (14) of the form factor is also in accordance 
with the conditions (5) and (6). However, on account of the 
factor M/m in (16), we see that with the choice (14) the range 
of momenta for which we have correspondence to the usual 
theory is more restricted for the mesons than for the nucleons.

Using the explicit expression (14) for the form factor the self­
energies of the meson and the nucleon derived in Section 3 may 
now be evaluated. The meson self-energy (3.18) contains a 
fr-factor

\G(K, ä-//)|2. (17)

In the frame of reference where the meson is at rest, we have

772 = Æ2. (18)

Accordingly, the form factor restricts the domain of integration to

In the meson rest system, we obtain from (3.18), performing 

the intergrations over Ko and over all directions of K.
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ô ni2 - M% y 4 (19)

Whence, to the first order in
1

AH

ôm ôm2 2 I g2 \ m 
m 2 m2 3 % \4 Af (20)

a = mA is the ratio between Z and the meson Compton wavelength 

— and may be expected to be of the order of magnitude of unity. 
m

For the nucleon self-energy (3.22) we obtain in the rest 
system of the particle, in the same approximation as before,

and

ôdfi =_ -3
M 6 n \4 \Af /

ÓAí = 0

Ô(Ai)o = <5Afi
Af Af

ó(An)o _ ôdfn
M “ M '

(21)

(22)

Introducing for m the mass of the %-mcson, and putting 

q2/4 zr ~ , we obtainJ 1 10

ni

ni

(23)

which, for a of the order of magnitude of unity, means that the 
mass corrections are small fractions of the actual masses.
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It is instructive by direct calculation to verify that the 
form factor (14), which was chosen in accordance with the 
correspondence requirement formulated in the beginning of this 
section, actually docs not affect the cross-sections for nucleon­
nucleon scattering and for the scattering of mesons by nucleons 
for sufficiently weak collisions. We shall not here give any de­
tailed derivation of the corresponding matrix elements of the 
^-matrix. The calculation is quite straightforward, and the 
results will be quoted without proof. In the local limit, the matrix 
element of ?/ for a transition from an initial state with one meson 
of momentum p and one nucleon of momentum P^' present 
to a final state where the particles have momenta p" and P^", 
respectively, consists of two contributions corresponding to the 
two graphs

Let the contribution from the first graph be (P< + > 'p" | A | P^'p 
and that from the second <P(+)"p" | B | P(+)'p'>. Then, the corre­
sponding matrix element in the theory of non-localized interaction 
can be written in the form

p')G(P, + )/ + p", —P(+)')

f- < P{+}"p" I BI P(+)'p' > G (P(+)", — P(+)" —p") G(P(+)' + p(+>')
(26)

Also the matrix element determining the nucleon-nucleon scat­
tering cross-section can in the local limit be written as a sum of 
two terms A and B. If P' and P'" denote the momenta of the 
incident nucleons, and P" and P1V those of the scattered nucleons, 
the corresponding matrix elements in the theory of non-localized 
interaction are
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+ < P" P"'\lï\P" P'" > G(Piv, P') G (P",—P'").
(27)

The two terms are the contributions from the following two 
graphs, respectively.

By comparing the G-factors in (26) and (27) with those in (5), 
(6), and (7) it becomes clear from the discussion on p. 26 and 27 
that the scattering matrix elements (26) and (27) are identical 
with those of the corresponding local theory for all processes in

1which the momenta involved are small compared with t in the 
X

frame of reference where the center of gravity of the system is 
at rest.

5. Physical interpretation of the theory. 
Transformation theory.

In the general formalism developed in Section 1, the variables 
ÿ(æ), y(.r) and u (.r) play a role similar to that of the field vari­
ables in the usual theories, in as far as the connection between 
these variables in different space-time points is given by certain 
integro differential equations. However, the physical interpre­
tation of the field variables is in general much more complicated 
than in the usual theory. In fact, a direct interpretation is given 
only for the in- and out-fields which are the quantities having 
a simple physical meaning. In the general case, the ip and u 
variables may rather be regarded as a kind of auxiliary quantities 
giving the connection between the directly observable in- and 
out-fields and thus allowing of a determination of the S-matrix. 
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The usual interpretation of the field variables is possible only 
in the limit of slowly varying fields where the conventional 
theory is valid.

The present formalism offers an example of a theory which 
allows the S-matrix to be calculated for any system of interacting 
nucleons and mesons. The only arbitrariness still present in the 
theory is that involved in the choice of the invariant function 
G (J1, Z3). This function could in principle be determined by 
comparison of the results of high energy scattering experiments 
with the cross-sections following from the theory.

In order to obtain a convergent theory, it seems necessary 
to give up some of the general concepts of quantum mechanics 
and, to avoid paradoxes, it is important to realize the fundamental 
difference between a theory of the kind considered here and the 
usual quantum mechanical description. This difference was 
strikingly illustrated already in the first section, where it was 
pointed out that the quantities which in the local limit correspond 
to energy, momentum, and charge of the system cannot be 
considered constants of the motion. This should, however, not 
be considered a defect of the theory, since it is sufficient to require 
that these quantities in general are constants of collision.

On account of the non-Hamiltonian form of the present 
formalism it is clear that also the notion of canonical transfor­
mations loses its importance in this theory. There are other, more1 
general transformations, however, which play a similar role as 
the canonical transformations do in ordinary quantum mechanics. 
In the local theory, a canonical transformation of the field vari­
ables (p (x) can always be written in the form

<p (x) = (1 )

where T is a unitary operator which may be regarded as an 
arbitrary functional of the field variables (p (x, Z) on a space-like 
surface t — constant. This transformation has the property that 
the commutation relations for the transformed variables cp are 
the same as those for the old variables on the surface t = constant. 
Further, the field equations in terms of the new variables have 
again the form of canonical equations of motion with the same 
Hamiltonian H, although of course H is a different function of 
the transformed variables than it is of the old variables.
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In an S-matrix formalism where the S-matrix is defined as 
the unitary matrix connecting two sets of free field variables 
<pm and <pout, by the equation

<pout(.r) = Sf^in(.r)S, (2)

one is led to consider canonical transformations of the in- and 
out-variables given by

(3)

where Tm and Tout are certain functionals of 99111 (x) and <pout (x), 
respectively, on the arbitrary surface t — constant. From (3) 
we get

(4)
where

(5)

is a unitary matrix. If the transformation (3) is such that

(6)

which means that 7'0Ut is the same functional of out-variables as 
Tm is of the in-variables, we have

(?)

and the S-matrix is invariant. A transformation of this kind may 
be called a “collision transformation’’ and, in a pure S-matrix 
theory, such transformations play a similar role as the canonical 
transformations in the usual theory.

In a formalism like the present, which pretends to link up 
the pure S-matrix description with the usual quantum mechan­
ical description, a certain class of transformations of the variables 
<p are of special importance. To any collision transformation 
corresponds a very wide class of transformations

$ = $ tø O')] (8) 
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which have the property that (x) asymptotically for t —>■ zt x 
coincides with ç>in and $out, respectively. However, on account 
of the correspondence requirement, we are only interested in 
those transformations which in the limit of slowly varying fields 
reduce to canonical transformations. Transformations of this 
kind will be called quasi-canonical.

We shall now consider a special type of quasi-canonical 
transformations, viz. the gauge transformation

ç? (x) =

ll (x) = ll (x)
(9)

which transforms the field equations (1.19) into

{Vp. (dp,— id/j.%) + 3/J ip = — 0 (x, x", xzzz) u(x") ip (x'") dx"dx"' |

• 0’ o (10)
(□ — m2) il — ïp (xz) 0 (xz, x, xzzz) $ (xzzz) dx'dx"', j

where we have put

F(xz, xzz, xzzz) = elZ<x ) F(xz, xzz, xzzz) e lz(xZZZ)} ø = AF. (11)

Since the transformed in- and out-fields are equal to the original 
in- and out-fields times el%, it is clear that the S-matrix connecting 
the in- and out-fields remains unchanged by this transformation. 
As is well known, the phase transformation of the free field 
variables is a canonical transformation of the type (3) with

In the case of slowly varying fields, both ø and ø are effectively 
equal to ¿-functions, and we have complete gauge invariance 
in the usual sense. On the other hand, if the fields cannot be 
considered slowly varying, the form factor F must transform 
along with a phase transformation of the ip's in accordance 
with (11).

Dan.Mat.Fys.Medd. 27, no.7. 3



34 Nr. 7

If the nucleons are protons subject to an external electro­
magnetic field, a gauge invariant theory can again only be ob­
tained if the form factor is considered as dependent on the four- 
potentials of the external field. As remarked by C. Bloch, a 
formally gauge invariant theory can be obtained in the case of 
an external electromagnetic field if the form factor is taken as

0 4 (x', x", x"' ) = exp (— i ( Afl dx^) ■ ø (x', x", x'"), ( 13)

where 0 is the form factor for Ap = 0, and the path of inte­
gration is taken as the straight line connecting the points x' and 
x'" in Minkowski space. The field equations can then be taken as

{» — ieAp) + y = — (.r, æ", x"') u (x") (x"') dx"dx"'

(□ — m2) u = -y; (x') 0 4 (x', x, x'") xp (x"') dx'dx'".
(14

It is easily seen that the so defined form 
transformation

■4/z = -4^ + 5/zTl

factor by the gauge

(15)

of the potentials transforms as

Fa (x', x", x"') = eieA^ FA >r"s øg)

which means that the transformation (16) is equivalent to a 
quasi-canonical transformation of the type (9).

Instead of this completely gauge invariant scheme with the 
complicated form factor (14) an alternative procedure would 
be to fix the gauge of the potentials by choosing these as the re­
tarded potentials from external current and charge distributions. 
Since the retarded potentials in the limit of vanishing current 
and charge distribution tend to zero, it would be consistent to 
choose (he same form factor as in the case of no external fields. 
For a different choice of gauge, the form factor should then be 
transformed in accordance with (11).
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6. The polarization of the vacuum by an external 
meson field.

As is well known, the coupling of the meson field to the 
nucleon field in its vacuum state gives rise to a polarization ef­
fect which, in the language of perturbation theory, can be at­
tributed to the virtual creation and annihilation of nucleon pairs. 
In this section, we shall confine ourselves to the approximation 
where the meson field can be treated as a classical field. Although 
the physical interpretation of an external meson field is not at 
all obvious, an investigation of this kind throws some light on 
the types of polarization effects which are caused by quantized 
meson fields.

To illustrate this effect, we shall calculate the vacuum ex­
pectation value of the source density

/(rr) = z^^(l)y5F(l,x, 3)v>(3)d(13) (1)

to the second order in the coupling constant. To simplify the 
problem, we only treat the case of a meson field which is weak, in 
the sense that no real scattering and pair creation processes take 
place to lhe first order in the coupling constant g. Consequently, 
the first order correction to the out-fields obtained from the 
field equations (2.6) vanishes. Transforming the expression (2.10) 
for this correction to momentum space, it can be seen that the 
Fourier components u (p) of a weak meson field vanish when­
ever pair creation is compatible with the conservation laws of 
energy and momentum, i. e. whenever

P = P-P, (2)

where P and are nucleon wave vectors, P2 — P2 = —M2. 
Hence, the only non-vanishing Fourier components of u are 
those corresponding to wave vectors which could be considered 
as four-momenta of a particle with rest mass smaller than 2 M. 
In the same way as in Section 2, the vanishing of the first order 
correction to the out-fields allows one to simplify the expression 
of the first order correction to the ip's to

V>(1,(0) = i<AS(O 3)iI(2)v>"'(3)</(123) (3)

3* 
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given by (2.12). We can now calculate the vacuum expectation 
value of the source density (1). To the second order in the coupling 
constant </, we get

</>0 = í7j¡F(l ,r3)<f (1) (3) >0 d (13)

+ 0 j¡ ^(1 æ 3) < V(1)(l) fry“ (3) >o d(13) 

+ <7 F (1 æ 3) < ( 1 ) n^(1) (3) >0 d ( 13).I

(4)

The first of the terms on the right hand side vanishes. The two 
other ones can be evaluated using standard methods given in the 
Appendix B and we obtain after a short calculation

</>o = -4g2(2 7t) 3^dpdL\G(L+p, L)|2

X 2/)L + /?d(7? + -U2)“(7,)c"“'
J (3)

Here, G is the Fourier transform of the form factor and zz (p) is 
defined by

zz(.r) = \ zz (p) elpxdp. (6)

(5) can conveniently be written in the form

</>„ = ^0(p)n(p)eip«rfp (7)

or, alternatively,
< Oo = ^ (— idfl) il (x). (8)

From (5) we obtain the expression for 0,

(9)

P

9

(10)

According to our assumption about the external field, 
time-like vector and we can introduce 
lion A defined as the magnitude 
ence where the “meson is at rest”, 
Using (4.18), and performing three

•00
<P — — 4 z/2 (2 %)~2 dA I G (A2) |

•’o

is a 
the variable of integra-

—• * 

of L in the frame of refer-
/ / \

i. e. where p = ((). ± z |/ p2). 
of the integrations, we obtain
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Making use of the covariant expansion

(H)

we finally obtain the operator 0 introduced by (8) as a power 
series in the operator (□—nj2)/Åf2,

0 = bin2 + g (□ — in2) + c(1) ' ‘ (□ — in2) + . : . . (12)

II is convenient to express the induced source density in 
terms of the external source density creating the external 
meson field due to

(□—7U2)iZ = Z(e), (13)

and by (8) and (12) the expression for < 1 )0 is

</>„ = - el1" --■ ■■■ . (14)

The various constants introduced are easily obtained from (10) 
and (11). We get

dzn2 = —4 (f2 (2 ti) 2 Ç|G(/i2)|2iïiU'^2 + -w2(M
X J2 + .vr-t,„2

J. (^+»r-l«.y

c(i) = 2 H G (A2) I2 • J/2 Æ1 '/12 + M2

I («-H3 "

(15)

Clearly, bin2 represents the contribution to the square of the 
meson mass due to the interaction of the meson field with the
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nucleons. In fact, ôm2 in (15) is identical to (4.19). The induced 
density eI{c} is also unobservable in principle and gives rise to 
a change of the coupling constant by an amount eg. Thus, the 
first observable term in the series is the third one. It will be 
seen from (15) that the numerical values of the expansion coef­
ficients are highly sensible to the choice of the form factor. In 
the local limit, the two first of these diverge, ôm2 quadratically 
and e logarithmically, while with the choice (4.18) of the form 
factor we obtain the finite and small corrections

5 m
in

E
1

3 7Ï

(16)

where we have neglected higher powers in 1/ÂJf.
Here, a is the product of 2 with the meson mass m. Also the 

value obtained for the constant c(1) is considerably reduced by 
the introduction of the form factor. In fact, in the local limit.
we obtain

r(D( local
1

1 2 71
(17)

while, using the form factor (4.18), becomes

1 (18)

The ratio of the two values

(19)

c™

Ji)
1local

«-3

3
I 3

may be expected to be small. Thus, in the present theory, Ci^al 
does not represent the true vacuum polarization, contrary lo 
what would be expected from a renormalization point of view. 
This is in accordance with the point of view that the difficulties 
in quantum field theory should be overcome by a modification 
of the theories in the high energy region.
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It is seen from (15) that the main contribution to 

comes from the region Hence, in meson theory, the
vacuum polarization should be considered as a high energy 
phenomenon, contrary to what is the case in electrodynamics 
where the main contribution to the induced current comes from 
distances of the order of the Compton wavelength of the electron. 
This distance must be expected to be large compared with the 
constant z' which must be expected to occur in a convergent 
electron theory.

Added in proof. Professor W. Pauli has kindly pointed out to 
us that it is possible to construct a tensor t^v and a four vector 
/)< having the properties that a) for and become
identical with the usual expressions for the energy-momentum 
tensor and the four current of the field, respectively, and b) that 
tflv and /)¿ satisfy the strict continuity equations dv t/iv — 0 and 
dflj„ — 0. As shown by Professor Pauli, this opens the interesting 
possibility to introduce a Hamiltonian formalism and, hence, to 
perform a canonical quantization of the theory. We are greatly 
indebted to Professor Pauli for many illuminating discussions 
and comments on the subject of this papir.
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Appendix A.

In this appendix*), we shall, for the purpose of reference, 
give the definition of the various Green’s functions introduced 
in the text and their Fourier expansions. The singular function A 
can be defined as Green’s function solving the initial value problem 
of the homogeneous wave equation. Let us consider that solution 
0 (,r, cr) of the equation

(□ — z2) 0 (.r, o) = 0 (1)

which, together with its normal derivative, is given on a space­
like surface o'. Writing the solution in the form of a surface 
integral

0(.r, o) = ( (d (.r —.r')<^/0(.r\ a)—0(.r\ (.r —.r')} defy, (2)
ver

A (;r) obviously must satisfy

(□ —z2)d (.r) = 0

zf(.T) = (), >0

[d/iA (x) (iff/, = 1
ver

for any o' including the origin.
To solve the same boundary value problem of the inhomo­

geneous equation

(□—X2)0(æ) = /(æ) 0)

we introduce one more Green’s function Aa(x,x') satisfying

* This appendix and the following contain no new results. For details and 
proofs the reader is referred to d) and (’O).
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(□ — x2) (x, ar') = — ó (ar — a-')

(ar/o-, ar') = O 
^d/z dCT(a'/o-, ar') = O,

(5)

where we have used the notation ar/cr to indicate a point .r lying 
on the surface <7. n„ is the unit normal to o in the point ar/u. The 
solution of the mentioned boundary value problem is then

0 (ar) = 0 (a-, cr) — ( dCT (ar, x') I (x') dx’, (6)

where the free Held 0 (.r, o'), coinciding with 0(ar) on a, is given 
by (2). Taking in (5) for fixed x', u in the infinite past, we obtain 
the retarded Green’s function

satisfying

dret(ar — x') = lim Aa(x,x')
O’ ->— oc

(□ — x2) dret (a- — x') = —Ô (,r - x)

limdret(a'— x') — 0
x0 -> — X

lim dOzdrct (x — x') = 0.X’o -> — OC

(7)

(8)

Formally, dret solves the initial value problem, where the 
asymptotic form of ø (ar) and its derivative in the time direction 
are given at the infinite past. In the same way, we can define

satisfying

zladv (a* — x') — lim A° (x, ar') (9)
O-> + oc

(□ — x2) Jadv (ar — ar') = — ó (ar — ar')
lim dadv (ar — ar') = 0
Xo-> + OC

lim dodadv (ar — ar') = 0 .
a-„ -> + oc /I

(10)

Starting from the thus defined Green’s functions A, dret and 
dadv, we can define various other singular functions satisfying 
either the homogeneous equation
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(□- x2)0(.r) = O
or the inhomogeneous equation

(□ - X2) 0 O) = —ô (.r).

(11)

(12)

It is clear that the positive and negative frequency parts of d

d(+) — positive frequency part of A

A<~) = negative frequency part of A 

satisfy (11). The same holds for the function

A(1> = ¿(A^ — A^).

On the other hand, A defined by 

is a solution of (12).
If we introduce the characteristic functions

(13)

(14)

(15)

(16)

e (x) = sign x0

e (o', .r) =
1 for x on the future side of o 

+ 1 for X on the past side of o 

(17)

the following relations can be shown to hold among the various 
functions introduced.

d = d( + ) + /l(-)

A = — ó e (r) (-r)

d = jadv_jret

dadv - 1 i= d + - d =

dret £ (æ)+ 1 J
9

A° (x, x') = — i (x — x') — e(a, x')} A (x — x').

(18)

(19)

(20)

(21)

(22)

(23)
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From the well known Fourier expansions of A and A and 
the relations given above, one can easily deduce the expansions 
for the other functions. We have

d

(25)

(26)

jd) (27)( 2 rr)

11 (28)

zla<’v

4 (31)

x2) e/tedÂ-

eikxdk

Flere, , „ , —,, should he understood as Cauchy’s principal value, 
/c“ + yA

so that, for instance,

dret = (2tc)

(2tt)-4

r
•'---  00 *

z (2 %) 3

i (/À-0 elfcr 
Jcrel A’2 + x2

3V 2£ ó (F + x2) Àkxdk

( e (Á) <3 (F + x2) Àkxdk
J

(2 TT)“4 lj (*) Ô(F + xA (29)

j¡ L _J_~2 - (O Ö (k* + x2)[ eitorfA-. (30)

where Cret is taken along the Å-0-axes below the poles at k0 = 
±|/Æ2 + x2. In this form it can easily be verified that dret 
has the required asymptotic form.

Let us denote any of the Green’s functions introduced above 
by A ‘. The corresponding Green’s functions belonging to the Dirac 
equation are then defined as

5? = (»d^ x) . (32)

For completeness, we give the expansions for the S-functions

S = (2.-r) 3 ( {7¡lklt + ix) e (k) <5 (** + x2) e"“d*
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•(+) = (2 3)-3 (r/lk/t + ix) ó (A2 + x2) rfÁ- (34)

(-) = - (2 77)- 3 j¡ (r/t klt + í X) i ~ik) Ô (k2 + X2) e^dk (35)

(1) = i (2 ji) ~3 J (y^ + íx) <5 (F + x2) eikxdk (36)

=
i(‘2^yd7l‘kk-+,''<e^<ik

V 7 Á-2 + x2 (37)

ret ¡(2 ,’r)-4 j (;„/>•„ + ¿x) L ( - ÍTts (A) ó (A2 + x2)| e'*“dA- (38)

adv _ z’ (2 tt)-4 j¡ (?// kf( + ix) L 2 + — ím (k) Ô (k2 + x2) j elkxdk.
(39)
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Appendix B.

In this appendix, we shall derive the varions matrix elements 
needed in the calculation of the S-matrix. All field variables 
considered here are in-field variables and will be written without 
the subscript “in”. For simplicity, we also use the notation of 
§ 3, i. e. instead of x, x", . . we write 1,2, .... The spinor 
variables can, in a relativistically invariant way, be decomposed 
into a positive and a negative frequency part

ÿ = Q)

From the well known commutation relations for ip and ip one 
immediately finds that the only non-vanishing anticommutators are

=-/sÿ(3 O I 2
=-'Sÿ(3-l). )(

The operation of any positive frequency operator on a state of 
the nucleon field lowers the energy of the system and the operation 
of the ^-function lowers the value of the quantity zLV*) while 
the negative frequency operators and ip increase the energy and 
JA7, respectively. Accordingly, ïp<~) creates nucleons, creates 
antinucleons, while and annihilate antinucleons and nu­
cleons, respectively. The vacuum state vector ()>, defined as 
the state in which no particles are present, then satisfies

I fi > — b > 1 ■* J 0 )> = 0, (3)

and the Hermitian conjugate equations

<0|^(_) = 0, <o|y/-) = (). (4)

') AN = ¡¡ ipd^~x.
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(2), (3), and (4) allow us to calculate the vacuum expectation 
value of any product of ÿj and ip functions occurring in the 
S-malrix. For instance,

(5)
Using (1), the vacuum definitions (3) and (4), and the relation 
(2), the proof is straightforward

<<'|v„(1)V(5(3)|0> = <0|^+)(l)v>y’(3)|0> 
= <0|$,+)(l), vy>(3)}|0) 

-‘<’(3-0.
if we assume that the vacuum state vector is normalized. In a 
similar way, we can show that

< 0 I V„ (!) Vß(4) (<>) V/> (3) I o >

= S£> (6-1) Sÿ (3 - 4) - S<ÿ (6-4) S<;> (3-1).

To define states in which nucleons are present, it will be con­
venient to work in the momentum representation. We introduce 
the following notations: u(+\o-,7J) exp (z'P(+)æ), and 
exp(z‘P(—)a?) are the one particle eigenstates of energy and mo­
mentum satisfying the Dirac equation and corresponding to 
positive and negative states of energy, respectively. If the am­
plitudes z/ ' 1 and z/' are normalized, the expansion coefficients 
a defined by

ip( + >> (x) = (2 7t) 2 \ d^ P-d 1 (cr, P) e11 x ■* (a, P)
o *

ÿ^~\x) = (2%) 2 Ç d(3)P’P^(cr, P) e 11 xä(~\a,P)

a ' (7)
(x) = (2 ?r) 2 Ç P • (g, P) e1 J >(cr,P)

a *
ïp( (x) = (2 7t) 2 X ^d('^ P, P) e lI X(S+\a,P)

o •
satisfy the following commutation relations (only the non­
vanishing anticommutators arc written)
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{ä<+)(<7", P"), «<->«?')} = <Wä(P"_P')

(8) 
{«<->(«", P"), a<+)(a', P')} = b„"<!'t>(p"-P'').

In (7), PHJ is short lor (P, z | P2 {- A/2) and P^ for (P,— i | P2 -f- M2) 
while cr is the spin quantum number. It is easily seen from (7) 
that

cz( + ) = ü(_) = fz( + )t. (9)

'The one particle states are now defined in the following way

|<tP(+)> = 0(^)(<T,P)|()>, <UP( + )| - <0|fl( + )((T,P)
<lü> 

|CT7>(-0> = f/-)(CT)P)|o>, <crP(_)| = < 0 | ü( + ) (er, P) .

By this definition the states with one particle present are auto­
matically normalized. For instance,

< o7j( + ) | cr'P( + )/> = <0|a(+)(u,P)ö<-)((7',P')|0>

= < 0 I { a(+) (a, P), ä( ( (er', P')} | 0 >

= ó^ó(P-P')<0|0>

= ô^d(P-P').

If an annihilation operator cz*-’ is applied to |aP(:->)', we 
obtain

a(+)(a',P')|crP(+)> = da(T'ó(P- P')|()>. (11)

In the same way, states with two particles present are defined as

I <7"P(+)", a'P(+)/ > = â(_)(a", P")a(~} (o', P') | 0 >. (12)

By this definition the states are automatically normalized and 
antisymmetric in the two particles, i. e.

I cr"P(+)", a'P(+)/> = — | <t'P(+)', a"P(+)"> (13)

in accordance with the exclusion principle.
If an annihilation operator is applied to the state (12) one 

obtains
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a(+)(’p'", <j"')|a"Pi+)",<FP(+)'> =

= ôa"'a"ô(P"'— P")\ o'P^'y — ôa"'o'ô{P'"- -P')\ cr"P( + )">,
(14)

a relation which can be verified most easily in the standard wav 
by pushing the annihilation operator through to the right, using 
(8), (3), and (10).

We can now derive the matrix elements of the one particle 
part of the operator ^(1)^(6) obtained by subtraction of the 
vacuum expectation value limes the unit operator, i. e.

[wX1)v^(6)](1) = —<°|v,a(1)^(6)|o>. (15)
For instance, if the initial and final states both are nucleon states, we
obtain

= (2?r)—\a"> P") vp(a', P') exp i (P{ 6 — P(+i"l).

To prove this, we first remark that

<a"P(+’"|^(l)^(6)|<7'P<+)'> = 

= < a"PM" I y+)(l) I a'p<+1' > 

+ < a"P<+>" I v>< + >(6) I yp<+>->,

which is a consequence of the fact that terms containing two 
creation or two annihilation operators vanish when the number 
of particles is the same in the two states considered. The first 
of the terms on the light hand side is easily identified as the 
matrix element of the operator subtracted in (15), and the second 
becomes identical with the right hand side of (16) if one intro­
duces the expansion (7) of and + and uses (11).

Similarly, we find

< a"P^I [y>a (1) (4) (6) ipô (3)](1) I a'P(+)'> =

z-(2%)-3}^-)(or",P")^+>«P')expz-(P(+)'6-P(+)"4)-S^(3-l)

+ t¡^_) (a", P") z^;) (or', P') exp z (P( 1 p 3 — P( + )" 1 ) • (6 — 4)

- (a", P") z/j+) (er', P') exp z (P(+)'3 — P(+)"4) • S^“}(6 — 1)
- 5<-’ (<r", P") l/y+> « P') exp í(P<+>'6-P<+>" 1 ) -Sÿ(3 -4)j

(17)

Dan.Mat.Fys.Medd. 27, no.7. 4
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<P

Finally, using the same type of arguments, we obtain the 
matrix elements of the two particle part of the product of four 

functions. In the derivation, due regard must be paid to the 
minus signs introduced by the annihilation processes as illustrated 
by (14). The result is 

y'.<zlvP<+,iv|[ÿ„(l)^(4)v>/6)n(3)](2)|<7'P<+>',a'"P<+>'"> = 

= (2 ny 6 {i£-> (<?’, Plv) ¡^-> (<riv, ?lv) (o', P') (o'", P"')

X exp i ¡P(+)' 6 + IM'" 3 —P(+)" 1 — P<+>iv 4)

— (a", P") (<7iv, Piv) z/+) « P') z//> (a'", P'")

Xexp z{P(+)'6 + p(+)'"3 —P(+),'4 —P(+)iv 1}

- (a", P") (<riv, Piv) 4+) « P') (<?"', P"")

X exp z{P(+)' 3 + p<+)'"6 —P(+)// 1 — P(+)iv4}

+ (a", P") i/“* (<riv, Piv) i/ô+) « P') z><,+) (a'", P'")

X exp z <P(+)' 3 + P(+)/" 6 — P(+)" 4 P(+)iv 1 }}•

The corresponding results for the free meson field are the 
following. The meson wave functions can be decomposed into 
a positive and a negative frequency part zz(:) and zz(—\ where u(} 
is the creation operator and the annihilation operator of tin1 
field. The meson vacuum is defined by

z/+)|0> = 0, <o|z/“) = 0 (19)

and the non-vanishing commutators are

[u(+)(2), u(_)(5)] = zd(+)(2 —5) I

[zz(—>(2), zz(+)(5)] = zd(—)(2 —5) J

in accordance with d^r)(ar) =—d(-)(—.r). From (19) and (20) 
we get immediately the following vacuum expectation value used 
in the text

(1«

< 0 I zz (2) zz (5) I 0 > = zd(+) (2 — 5). (21)
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Introducing the quantity

co(p) = |/p2 + m2, p = (p, zco)

zz(_) and zz(+) can be expanded

zz( + ) = (2 7r)_2(v=- b{p)eipxd^p
J/ 2 co

,/-) = (2 tc)_K aU . M (p) e~ipxd^p
|/ 2 co

and the b’s are seen to satisfy the commutation

[&(?'), M(p)] = ô(p'_p).

A state with one meson present of momentum

p> = M(p)|o>

and it follows that the one particle part of zz (2 
matrix elements

<p"| [tz (2) zz (5)](1) |p'> = 
= |(2^)~3|œ(p'') œ(p')l 

X [el\p'^-p"^ 4- e' (p/2-p"5}j

(22)

> (23)

relations

(24)

» is defined as

(25)

zz(5) has the

> (26)

Indleveret til selskabet den 17. april 1952. 
Færdig fra trykkeriet den 20. november 1952.
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A relativistic field theory with non-localized interaction is in­
vestigated. The field equations are deduced by the variational 

principle from a Lagrange function containing an interaction 
term involving a form function. The essential departure from 
conventional field theory is the lack of causality, or, in other 
words, the lack of propagation character of the field equations. 
It is shown, however, that under certain conditions which must 
be satisfied by the form function this properly remains limited 
to small domains. Similarly there are no continuity equations, 
but conservation laws hold in the large. The quantization is per­
formed according to an extension of the scheme developed by 
Yang and Feldman making use of the concept of incoming and 
outgoing fields. It is shown that this procedure is always con­
sistent with the field equations. Assuming that the field equations 
can be solved by means of power series expansions it is possible 
to give rules generalizing Feynman’s rules giving all the terms of 
the expansion of an outgoing operator in terms of the incoming 
operators. Every term is associated with a doubled graph. An 
investigation is made of the convergence of the integrals obtained in 
this way. It is shown that many terms converge automatically as 
soon as the Fourier transform of the form function is supposed 
to fall off rapidly at large momenta. Some divergences remain 
in the higher order terms. They can, however, be removed by 
assuming that the Fourier transform of the form function has 
only lime-like components. It is finally shown that the gauge in­
variance requires the addition of a new interaction term in the 
Lagrange function, corresponding to a sort of exchange current.



1. Introduction.
It has been shown by Peierls and MacMa.\us(1) that it is 

possible to introduce a smearing function in a field theory in a 
Lorentz-invariant way. Yukawa* , on the other hand, has pro­
posed a theory involving non-local fields, which, as will be shown 
later, is equivalent to an ordinary field theory with an interaction 
containing a form function, if one takes a variation principle as 
a starting point*3\ These theories cannot be put into a Hamil­
tonian form and, consequently, have met with some difficulty 
in quantization. Recently, however, a new treatment of conven­
tional field theory was developed by Yang and Feldman(4) and 
by Kallen' ^, which can immediately be applied to field theories 
involving smearing functions*6, It has therefore become pos­
sible to build a complete Lorentz-invariant quantized field theory 
with a non-localized interaction, and it may be worth while to 
investigate the consistency of such a scheme, and the convergence 
of the results it yields.

If we take, for simplicity, the example of a nucleon field inter­
acting with a neutral scalar meson field, the scalar non-localized 
interaction term reads**)

Lf = g{dx,dx"dx'"F(x',x",x'")^+ (x')ii(x")^(x'"), (1,1)

where the form function F must be Lorentz invariant and such 
that contributions to Ft- come only from the volume elements for 
which the three points x', x", x"' are very near each other. By 
points near each other is meant points whose coordinates diller 
by amounts of the order of a characteristic length z. The inter­
action (1,1) is Hermitian if the form function satisfies the condi-

(*) In this formula x stands for x1, x2, x3, x4 = t, and dx for dx1dx2dx3dx4. 
We shall use units such that ti = c = 1 . We shall write ab for the scalar product 
27a b‘, where a, = a' for i — 1, 2, 3, and a4 = -a4. The metric tensor g.lv is 
defined by — 0 if ii 4= (gllt = 1, if // = 1, 2. 3, and </44 = 1. 
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tion Fx", x') — F* (x', x", x'"). The introduction of a form 
function in Lt corresponds to a kind of interaction which has no 
propagation character, and it is important that such effects should 
remain limited to small domains. Because of its Lorentz invariance 
F will remain finite for arbitrarily large distances of the points 
x', x", x'" as long as they remain near the light cones of one 
another. Under certain conditions, however, compensations can 
occur in the neighborhood of the light cones in such a way that 
the corresponding volume elements do not contribute appreciably 
to the integral (1,1)(1\ A quantitative study of this effect will 
be made in section 2, and the conditions which F must satisfy 
will be established.

It may be of some interest to show that Yukawa’s non-local 
field theory leads to an interaction of the form (1,1) with a 
particular form function F. We may take, for instance, a non­
local field U interacting with a conventional field w. The field U 
is a function of two points x' and x"' in space-time , and the 
field equations can be deduced from a variation principle in­
volving the interaction term

Li — g ( dx’dx"' y+ (,r') (af | U | x") y (x"'). (1,2)

The field U can be represented by the Fourier integral

(x' I UI x'") = \ dk a (k) eikX ô (kr) Ô (r2 — À2),

where X — (1/2) (a?' -j- x") and r = x' — x'". If we associate 
with the field U the local field

zz (a?") = dk a (Å) elkx' ,

we can write (1,2) in the form of (1,1) with

F(x',x",x"') = (2n)-À{dkeik(X~x,,)ô(kr)ô(r2-À2).

Detailed investigation of this form function, however, shows that 
it does not yield convergent self-energies(8).

The non-localized interaction is also connected with the field 
theories involving higher order equations considered by several 
authors and systematically investigated by Pais and Uhlen- 
beck(9). The general type of these equations is
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/’(□)u(.r) = q(x), (1,3)

where o(x) is the source of the field. If f is an analytical function 
it can be factorized and each factor corresponds to a possible 
mass of the particles described by the field u. Theories with more 
than one mass, however, should be rejected because they intro­
duce negative energies. The only acceptable equations (1,3) are 
then of the form

>(□—m2)u(.r) = o(.r). (1,4)

'fhe differential operator has an inverse and we can write 
(1,4) in the equivalent form

(□ —ni2)z/(.r) = c“^D)o(.r) = \cte'G(.r— x')q(x'), (1,5)

when'
(.r) = (2 tt)~4 \ dk e~f(~k*> eikx. ( 1,6)

This is the equation which would be obtained with the inter­
action (1,1) and a form function F — G(x”— x') ô (x'—-x'"). 
The possibility of transforming an equation such as (1,3) into 
an equation of the form (1,5) shows that one has to eliminate 
certain types of form functions corresponding to the introduction 
of particles with different masses and negative energy. If the 
Fourier transform of G has poles, G can be written

G(x) = (2 a)~l^dketkx g(- k2) / JJ (k2 + m’f), (1,7)

and the equation (1,5) is equivalent to the multi-mass equation 

7T (— O + (□ - nF) u(x) = g(\J)g(x).
i

The function (1,7), how ever, behaves for large ,r like | x21—3'‘ as 
does every propagation function (the flux of the square of the 
function through a given solid angle is independent of the dis­
tance). The occurrence of additional masses will then be avoided 
if it is specified that the form functions should fall off for large 
x faster than propagation functions.

The field equations are deduced from the Lagrange function 
by the variation principle. Because of the introduction of a form 
function in the interaction the field equations are not ordinary 
differential equations, and the values of the field functions at 
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I + (It are not simply defined in terms of the valnes at t. Con­
sequently, the conservation equations do not hold in their differen­
tial form. It will be shown, however, that conservation laws hold 
in the large, in the sense that energy, momentum, angular momen­
tum and electric charge at a time t, before any collision has taken 
place, are equal to the corresponding quantities after collision, 

fhe quantization can be performed by postulating that the

Fig. 1.

asymptotic values of the fields for t — — <x> and I — zc (called 
the incoming and the outgoing fields) satisfy the usual commuta­
tion relations of the free fields. It must then be shown that these 
commutation relations are consistent with the field equations. 
This can be done by using the fact that the constants of collision: 
energy, momentum, etc. . . . define the infinitesimal canonical 
transformations corresponding to the infinitesimal translations 
etc. . . . The S-matrix is then defined as the matrix which trans­
forms the incoming fields into the outgoing fields.

Any outgoing operator can in principle be computed from the 
field equations as a power series of the incoming operators. The 
calculations are simplified by a set of rules similar to Feynman’s 
rides for electrodynamics^10^. These rules are used for an in­
vestigation of the convergence of the self-energies to all orders. 
The way in which convergence results from the introduction of 



8 Nr. 8

a form function in the interaction can easily be seen on the second 
order self-energy. The graph corresponding to the conventional 
field theory is represented on Fig. 1 a. To the lines going from 
.rx to x2 correspond functions of ay— ,r2 which are singular on 
the light cone, and a divergence arises from the fact that the self­
energy integral involves a product of two functions becoming 
singular at the same points. The small circles on Fig. 1 b cor­
respond to the introduction of form functions F (x', x", x"'), 
and it is seen that the divergence will disappear if F is a smooth 
function of x' — x" and x" x'". A rigorous treatment requires 
the use of the energy-momentum space. However, it can already 
be seen that the convergence of the self-energies of both types of 
particles requires that F be a smooth function of all three variables.

There is then a little difficulty when the interactions with the 
electromagnetic field are taken into account since the interaction 
term (1,1) is not gauge invariant. Il will be shown, however, 
that a supplementary interaction term can be added to (1,1) in 
such a way that the sum is gauge invariant. This term describes 
the current due to the jumping of the charge between the points 
,rt and .r(, .r, and ay.

2. The form functions.
In this section we shall investigate under which conditions 

the non-localizability of the interaction is limited to dimensions 
of the order of a given length z. We consider first a simple case:

A. Functions of tino points^. In the conventional theory 
with a localized interaction the function F is a product of two 
four-dimensional Dirac functions: F (x', x" , x'") — ô (x' — x") 
Ô (x"— x"'). As a first generalization we shall assume that 
F contains only one four-dimensional Dirac function: F 
ô(a'x' + «"x" + a'"x"')G, where the scalar constants a', a", a'" 
satisfy the relation a' a" + a" = 0. The factor G can be ex­
pressed as a function of two points only, x' and x", for instance, 
if zL 0. The invariance under translations and Lorentz 
transformations requires that G should be a function of s = 
(.r' — x")2^.

(*) For s < 0 the function G can also take two different values for the same 
value of s depending on whether x' — x" is positive or negative. We shall come 
back to this later.
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We shall now investigate under which conditions the form 
factor becomes very small as soon as x' and x" are not very 
near one another. More precisely, considering the integral

I = \dx'G(s) f(x'), (2,1)

where f\x') is an arbitrary smooth function, it should depend 
only on the values of /’(.r') for x' very near x". A first condition 
to be fulfilled is that G(s) should fall off very rapidly as |s| be­
comes much larger than À2. This condition, however, is not suf- . 
ficient as G(s) remains finite for x' near the light cone of x". 
Thus, the contribution to / coming from the volume elements which 
are far from x", but near the light cone of x", requires a special 
investigation.

It is convenient to introduce the point .r0 of the light cone of 
x" which is near x' and has the same three first coordinates. We 
call a the three-dimensional length of x'— x" or ,v0 x". We 
have x4— x"4 = ea, where £ is + 1 or—1 depending on whether 
x4 — x"4 is positive or negative. The distance of x' to the light 
cone is conveniently defined by £ — e(x4— x'4). The relation 
between .s- and £ is

s = 2aê-F. (2,2)

It shows that for large a a small variation of £ corresponds to a 
large variation of s. As G is very small for large values of |s|, it 
follows that for large a we can expand the function f in powers 
of £ around the light cone and extend the integration with respect 
to x'4 or £ from — oc to + 00 •

As we are interested in orders of magnitude only we shall 
omit all numerical coefficients. The Taylor expansion of/ around 
the light cone reads

f(x’) = f(x0,xl -
I)

where /’^ = (d/dx'4)k f(x) taken at the point x = .r0- Finally, 
we replace the variable of integration .r'4 by s. We have

dx'4 — ds/2(ci— £) = ((/.s/o) 5

and from (2,2) we deduce
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X

£ = o — Ça2— s)'12 Çs/a) Çs/a2)11.
o

Using all the preceding expansions the contribution to I of the 
neighborhood of the light cone of x" can be written

dx'G Çs) /’(.r) \ dx'ds¿ £k + mG Çs) fk/am + 1 a=
«' o

dx’ds ¿ (.s/a)k + m (s/a2)n G^fpa™ +1 dx’ ¿ + kfkl«2"'+k+'
0 •’ 0

where the A/n are the “moments” of the function G defined by
/»+ 00

.1/,, = <WG(«).
• -----X

The formula (2,3) shows how the contributions to I coming from 
the neighborhood of the light cone of x" decrease with increasing 
distance a. Namely, if

— J/j — J/2 — • • • — — 0, A/p 4- 0, (2,4)
the contributions decrease as (l/a)p+ . As the volume element dx' 
is proprotional to a2da, it is seen that the integral I extended to 
the whole space-time is convergent for any bounded function /' 
with bounded derivatives if p 3. The integral \ dx'G(s) is 
convergent for p ^4 2.

It should be noted that integrals such as I are usually not 
absolutely convergent. The convergence is due to cancellations 
arising within the volume elements which are near the light cone 
of x". In calculating such integrals, one must always use a method 
allowing these cancellations to take place. For instance, one can 
start by restricting the domain of integration to a finite part of 
space-time enclosed within a closed surface 27, and then let 27 go 
to infinity. It is easily seen that the cancellations which make the 
integral I convergent will lake place if the angle under which 27 
cuts the light cone tends nowhere to zero. The possibility of 
defining in a Lorentz invariant way an integral which is not 
absolutely convergent clearly comes from the fad that the can­
cellations making the integral convergent take place within layers 
along the light cone which become infinitely narrow at infinity.

If for .s \4 0 the form function takes different values depending 
on the sign of ,r4, it is convenient to write G as a sum of an even 
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function G+ which is invariant under the substitution .r~>—a-, 
and of an odd function G_ which changes sign under the same sub­
stitution. It follows from the relativistic invariance that G_ must 
vanish for s>0. It is easily seen that the functions G+ and G_ 
must satisfy the conditions (2,4) independently.

For many calculations it is more appropriate to represent G 
by a Fourier integral

G(x) = JrfAeifcW), (2,5)

where g(k) is a function of the argument q = k2, and can be 
represented by a sum of an even function g._ and an odd func­
tion g_. The Fourier transformation (2,5) gives then G+ in terms 
of g+, and G_ in terms of g_. We shall now investigate which 
conditions must be satisfied by g+ and g_ in order that the cor­
responding G should be an acceptable form function. This re­
quires a closer investigation of the correspondence between G 
and g given by (2,5).

The integration in (2,5) with respect to the angular orientation 
of k yields

G (x) = — G dZ ( dk4 Sin lae~ik,x,g (k)
a .Læ

4-77 d c+x e+cc
=------- \ dl dk4 Cos lae~,k‘x‘g (k)

® •'—oo •—oc

9 77 d (»+ œ (• + 00= — — — \ dZ ( dk4ei(~l tt~kw)g ,
a da)_J_x

where a = | x |, and |z| = | k |. Introducing now the decomposi­
tion of G and g into even and odd parts we get

+ °C 

L 0) = — V da $ Ü dl dk4edla~k*xi>> g+ (g),

--- X

4- x

(s) = — ~ Q a \ jj dl dk4eida-k*xt)e (k4) g_ (g), 

- X

where s — .r2, g = k2, and ¿(A’4) = A,4/|á’4|. It should be noted 
that the precise definition of G_(.s) is

G_(x) = G_(s) if x4 > 0, G_(x) = — G_(s) if .r4 < 0.
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A similar definition holds for </_(</). Replacing the variables of 
integration I and À’4 by

I_
q = I2 — and a = — . if a 4= .r4,

(i — .r4

l+kA Tor « — —. if a = .r4,
ci + X4

we get after some simple manipulations

G+ (s) = ~~nyn \ \ £ („) ¿1 ", '«> g ^q) t
-  -J2

-----X

1 d d .
As —-y- — 2 n , we can also write(ida ds

4" x

64 ($) — — w da dqe (a) e(,/2)(i ' q r -*  g_(q),

(*) In this formula g_(q) = 0 for ç > 0. It follows then from Cauchy’s theorem 
applied to the integration with respect to a that G (s) = 0 for s > 0.

— cc
+00 (2,6)

G_(s) = -Í7c^dadqe(i2H,,^(ltc)g (qY*\

--X

The formulas (2,6) may be interpreted in the following manner.
G is obtained from g by three successive transformations:

a) the Fourier transformation
.1 4- co

= \dqe(ll2) g (q),
----- QC

b) the transformation

¥>+(“) = e(o)cyp+(l/«), or V’_(«) = <p_(l/i<)>

e) the Fourier transformation
t ~r x

G (s') — —i?t \ da '2)<:sy> (a).
• -—00
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We shall use this decomposition to lind the properties of g suf­
ficient that G defined by (2,5) shall be an acceptable form func­
tion.

The conditions which must be satisfied by G are:

1) to be continuous;
2) to go to zero as | s | —> x , for instance as (l/s)k;

í» + 0° \ ’ z

3) \ G(.s-) = 0, for n = 0,1,..., p 1.
t ---- QC

As regards the condition 2), one might require that G (s) should 
tend to zero much faster than we assume here, exponentially for 
instance. It seems, however, natural to require only that G be­
haves for large s in such a way that its integral over the whole 
space-time is convergent. The condition 2) with k > 3 is then 
sufficient. The convergence of the moments involved in the con­
dition 3) requires in fact k > p + l’*\ The condition assumed 
here seems natural in view of the fact that the contribution to the 
integral (2,1) coming from the neighborhood of the light cone 
never decreases faster than an inverse power of the distance.

Sufficient conditions for ^(«) corresponding to (2,7) are that 
y must have k continuous derivatives such that

/ + æ i i

1) \ da I y> (a) | < oc ;
♦ ---- QC

2) Í da I («) I < oo , for n = 1, 2, . . .,
• ----00

3) y)dd (0) = 0, for n = 0, 1, . . ., p — 1.

The derivatives of y> (with respect to a) are given in terms of the 
derivatives of cp (with respect to /?) by the formula

m — zi
y>(«) = (2.f>

m = 1

where ß = l/w, and where the numerical coefficients have been

(*) The expansion (2,3) requires the existence of moments of all orders i. e. 
an exponential decrease of G for large s. The whole argument, however, can be 
carried through by means of limited asymptotic expansions only. The condition 
we have assumed is then sufficient.

(**) Here we make use of a well-known theorem on the aysmptotic value of 
Fourier integrals; see for instance, S. Bochner, Fouriersche Integrale, Chelsea 
Publishing Co., New York, p. 11.
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omitted. The presence in the relation between <p+ and of the 
factor e(ce) which has a discontinuons variation at a — 0 does 
not modify the equation (2,9) since the function ip and all its 
derivatives involved here vanish at a — 0 (this follows from 3 
for the p — 1 first derivatives and for the derivatives of the order 
p, p + 1 , • • •, k from the behavior of at infinity as indicated 
below).

It is seen from (2,9) that we must assume that ç has Á- con­
tinuous derivatives. From the condition 1) it follows that cp must 
be such that

4- so

i fp (ß) i <00 •

This condition is satisfied if we assume that (p is bounded for 
ß = rh oo , is regular at ß = Q, and that <p(0) = </(0) = 0. 
Finally, it is easily seen that the conditions 2) are satisfied if we 
assume that (p^m\ß) (m = 1,2,..., À’) behaves at infinity as 
( l/ß)m+ '. The conditions 3) are then automatically satisfied. From 
the relations <p(0) = q/(0) = 0 it follows that

(2,10)

On the other hand,

<p(m)(£> = QWiføtø);
• -----00

and this function behaves at infinity as (1 /ß)m + k if qmg(q) has 
m + k continuous derivatives absolutely integrable from — oo to 
+ QO (Bochner loc. cit.). As m takes the values 1,2,..., k we 
are led to the following conditions:

g{q) is continuous and has 2 k continuous derivatives; 
f7 n (7) (n = 0, 1, . . ., 2 Á) goes to zero as 7 —> i 00 

faster than (l/g)fc + 1.
(2,H)

The conditions (2,10 and 11) arc sufficient to insure that 
G(s) satisfies (2,7). The function (7) vanishes for g>(). It 
follows then from the continuity of the 2 k first derivatives that 

.7^(0) = 0, for n = 0, 1, . . ., 2 Å-. (2,12)
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The conditions (2, 10 and 11) allow us to choose functions 
g(g) which vanish outside a certain interval. In such a case, g (of) 
and its 2 k first derivatives must vanish at the ends of the interval.

The function 6L_(x) can be expressed in terms of the usual 
function I) of field theory. Performing in (2,5) first the integra­
tion at q constant, and then the integration over q, we get indeed

G„(x) = (2 tc)3 dqg_(q)l) (x, q), (2,13)
• -----00

where D(s, q) is the function corresponding to the mass |/— q. 
If we assume that g+(q) is different from zero only if g<0 
(which implies that g+l)(0) = 0, for n = 0, 1, . . ., 2 k), we can, 
similarly, express G+(x) in terms of

G+(s) = (2 7r)3(dgg+(g)D(1)(x, g). (2,14)
----- QO

The expressions (2,13 and 14) are identical with those used in 
the theory of regularization(12\ The relations (2,10) also belong 
to the latter theory. They express the condition that the singulari­
ties of the functions 1) and at x = 0 should not appear in 
G(x). The conditions (2,11), however, are in contradiction with 
the limiting process used in the idealistic renormalization, or with 
the introduction of a discrete set of masses. Consequently, the 
behavior for large x of a form function is essentially different from 
that of a regularized function.

It may be noted, finally, that the transformations considered 
in this section are special cases of the Fourier-Bessel transforma- 
tion(13). The transformation of the odd functions, for instance, 
can be written

C+a° Z X rG_ (r) = 2 ztt2 \ xdx (xr) xg_(x),
Jo

where r — |/—x, and x = |/—q.

B. Functions of three points. As it was shown in section 1, the 
form function should actually be a smooth function of all three 
variables. It will then be a function of the invariants^ > 

s=(æ" —æ'")2, t = (x'" — x')2, u = (x — x")2.

(*) These invariants are not entirely independent. No triangle x', x", x'" 
exists if s, t and u are negative and if s2 + Z2 + u2 — 2 si — 2 hi —- 2 us < 0. 
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First of all, the form function should fall oil rapidly as s, t, or 
u becomes large (strictly speaking, one could also require that F 
falls oil' as any of two only of the quantities s, t, u becomes large). 
There are, however, large triangles x', x", x'" for which s, I and 
u are small. The contribution to an integral such as

J = dx" dx" F f(x', x", x") (2,15)

coming from such triangles can be investigated by the same method 
as for the functions of two variables. Let «, b and c be the lengths 
of the space parts of x" — x'", x" — x and x — x", respectively, 
and suppose that a b c. For a large triangle a and b at least 
will be large compared with z. Let ,r0 and xq be the points of the 
light cone of x'" which are near x' and x", and have the same 
space coordinates. We have

.r i a- 4 = f(i, <r0 ,r 4 = eb, ■ e = ±1.

Introducing the distances of x' and .r" to the light cone of x'" by

£ = £(.r{-.r"4), r/ = e(x* -x'4), (2,16)
we have

s = 2o£—£2, / = 2£>?/—~ ?;2. (^.17)

Again, we can carry out the integration in I with respect to .r'4 
and x"4 using Taylor expansions around the light cone of x'". 
It is then convenient to replace the variables x'4 and x' 4 by s 
and t with the help of (2,16) and (2,17). An additional complica­
tion comes from the fact that u is now a function of s and / since 
all three quantities are functions of x'4 and a-"4 (or £ and //). It 
is readily found that

which shows that when the triangle becomes large the quantity 
<! = c2 — (n — by1 must remain finite. It is one of the parameters 
which define the way in which the triangle is increasing. As other 
parameter we can take a¡b — //, and we have then

u = ( 1 — //) ( t — sifi ) + 7 + . . 
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where the omitted terms are quadratic in £ and q. We can then ex­
pand F in Taylor series in £ and q around n = (1 —;t) (/ — $/¿í) -f- q . 
One finally finds for the contribution of the large triangles the 
expansion

/ = \ dx' dx" dx'" (2,18)

where fkk - (d/dxr (d/dx'1)1' f(x, x", x'") taken at x = ,r0, 
x" — .Tn, and XP (u, q) is the derivative of the order / with* n,n v ‘7 •'
réspect to q of the moment

A/n H' (/' - 7> = d.s dt sn tn F (s, /, ( 1 — q) ( t — sl/t) + q).

It is seen from (2,18) that if F satisfies the conditions

3/nn,(/i, 7) ~ f°r 71 d" n' — P — 1 ’

for all relevant values of and q, the contribution of the large 
triangles decreases as (l/a)p+. Thus, we have extended the re­
sult obtained for the form functions of two variables.

We shall not go any further into the analysis of the general 
case since it is much more complicated than for the functions of 
two points. Moreover, form functions of three points can be built 
bv means of form functions of two points, and this procedure may 
be sufficient for practical purposes. For instance, we may take

r (x , x , x ) = G (.r — ,r )G(.r — .r ),

or, more symmetrically,

F(.r',.r",.v"') = í¡d.rG:;:(.r' - .r)W(.r" —.r)G(.r'" ,r). (2,19)

The use of such a form function corresponds to replacing the 
field functions by “smeared fields’’, as defined by Peierls and 
MacManus(1).

The Fourier transform of the function (2,19) is particularly 
simple. It is the product of the Fourier transforms of the three 
functions G*, H and G occurring in F and of the four-dimensional 
Dirac function ô(À-' + k" + k"').

The results of this section show that the conditions under which 
a form function behaves like a smeared d-function have nothing

Dan.Mat.Fys.Medd. 27, no.8. 2 
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to do with the condition that its Fourier transform should resemble 
that of a ¿-function. This is due to the non-positive definite char­
acter of the distance in space-time. It follows that the behavior 
for A—> 0 of the Fourier transform of a form function gives very 
little information about the behavior of the function itself. In 
particular, a form function defined by a Fourier transform </(A) 
such that lim <y(A) = 1 may very well give rise for Z small to

Z->o
undesirable interactions transmitted with the velocity of light over 
large distances, or having no propagation character.

3. Conservation equations.

Taking the usual expressions for the Lagrange functions of 
the free particles, and the expression (1,1) for the interaction 
term, we obtain from the variation principle the field equations

(y/1 —Al\y>(x) + g{dx"dx'" F(x,x"x"')ii(x")y>(x"') = 0,
\ dx/l / '

‘ y/1 -f- M yj+ (x) + ( dx dx" F(x , x", x)y’+ (x')u(x") — 0, 
dx/l ’

(— □ -f /n2)u(x) + g \ dx'dx'"F(x', x, x'")ip+ (x')y’(x'") = 0.

(3,1)

In order to prove the existence of conservation equations it is 
convenient to introduce the integral Lp obtained by restricting 
the domain of integration in L to a finite part £? of space-time. 
In the interaction term Lt- it is sufficient to restrict lo the inte­
gration of only one variable x" for instance. We thus consider

Lo — ^dxH(x), where H(x) = F/o (x) + (x),

in which Hq is the free particle term and

Ht(x) — dx'dx'" F (x', x, x")y>+ (x')u(x)y)(x"') .

We call Ep the field equations deduced from Lp by the variational 
principle. The equations (3,1) will then be called Fx. The dif­
ference between the equations Ef) and Ex is that in the (wo first 
equations the integration with respect to x" is extended lo Q in­
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stead of the whole space-time. The difference is very small if x 
is inside ß at a distance large compared with A of the boundary 
2J of Q. This follows from the property of the form function 
F(x', x", x'") that it gives contributions to the integral L, only 
if the points x', x", x'" are at distances of the order of A from 
one another.

In what follows we shall consider only collision problems, 
fliis means that we assume that very far in the past and very 
far in the future the particles do not interact. The equations Eo 
and Eao are then very nearly identical everywhere if Q is so large 
that no collision takes place outside Q or near its boundary.

It should be noted that it is not quite correct to neglect the 
interaction term outside Q. Even if the particles do not interact, 
the existence of the interaction creates self-energies which modify 
the rest masses of the particles. This can be taken into account 
by adding to H, a renormalization term = —[AMip+ip + 
(Zlzn2/2)u2], where A M and Am2 should be chosen in such a way 
that the interaction //r = + Ht does not give rise to any self­
energy. With this modification the quantities M and m occurring 
in (3,1) are the real observed masses of the particles, and it is 
justified to neglect Hy if the particles described by the field are 
very far from each other.

Finally we see that considering a solution ip, u of the equa­
lions E^, it is possible to lind a domain Q such that the equa­
tions E() have a solution approximating ip, u inside 22 and on 27 
as closely as required. It follows that if a conservation equation 
on the boundary 27 of 22 holds for any solution of Eq, the same 
conservation equation will hold for the solutions of Ex on 27 if 
22 is large enough.

Let us assume now that ip and ii are solutions of the equations 
Eq and consider an arbitrary variation of ip and u; we have 

(3,2)

where is the surface element on 27 pointing toward the outside. 
If the variations of the fields correspond to a displacement of the 
fields defined by ôx!1, the variation öLq can be computed directly 
by making use of the invariance of the Lagrange function under

*>* 
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displacements. The difference between the integral of the dis­
placed fields and the nan-displaced fields is readily found

ó Li} = — {ci <yfl h .v" H (x ). (3,3)
• y

From (3,2) and (3,3) we obtain the general conservation equation

+ ó.r/' H = <>• (3,4)

is an infinitesimal translation

the equation (3,4) becomes

(3,5)0 ,

where

■l

du du 
dx/( dxv

dip 
dxu

, etc. •

( dovT^
• V

T!" = h dip dip' 
Lt„ dx..

can be identified as the energy-momentum tensor of the system, 
flic same method applied to the infinitesimal Lorentz transfor­
mations leads to the conservation equation of angular momentum. 
The Lagrange function is also invariant under gauge transfor­
mations

ip e' ay>, y> 'e luy'+, « = constant.

The corresponding infinitesimal transformation

5y = idaip, dip = - idaip ' , du = ()

gives dL() 
equation

where 

0. From (3,2) we obtain then the conservation

T (3,8)

is the four-vector current-charge.
It should be noted that in the conservation equations (3,5) 

and (3,7) the surface 27 is not arbitrary; it is the boundary surface 
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"i" = o
a .i-"

of the volume Í2 occurring in Lq. It follows that the usual con­
tinuity equations

=
dxr

do not hold if the interaction is non-localized.
It may be of interest to show this more directly. The calcula­

tion is simpler for the conservation equation of electric charge. 
Let us multiply as usual the first of the equations (3,1) on the 
left-hand side by yr (x), the second on the right-hand side by 
y(.r) and subtract. This gives

idx"dx'" F(x, x", x'")y> (.r)u(.r")^(.r"')
(3,10)

'The right-hand side of (3,10) vanishes of course if F is different 
from zero only if x — x", as in the case of a localized interact­
ion. It docs not vanish, however, in general, but if we integrate 
equation (3,10) over a domain the contribution of the right­
hand side reads 

(3,11)

where Q' is the part of space-time lying outside Q. If the inter­
action term 1I{ vanishes outside -C?, then (3,11) vanishes and we 
obtain the conservation equation (3,7).

It will be useful to consider domains P limited by two space­
like surfaces <r(1) and o-(2) very far in the past and in the future, 
respectively. Defining then the quantities

Gfl = ( dav T,lv, Q = \dovjv, (3,12)
♦’(T •’o'

where dav is the surface element on a such that daA > 0; the 
equations (3,5) and (3,7) show that Gf and () have the same value 
if a — a(1) or if o = or(2). These quantities are thus constants of 
collision*14); they represent the total energy-momentum and 
electric charge of the system.
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4. Quantization.

If all the calculations of the preceding section are carried out 
in such a way that the order of Hie factors is always preserved, 
the results will still hold if the field functions are non-commuting 
operators. In order to complete the formulation of the theory, we 
must still deline the commutation relations of the field functions. 
It is not easy to find directly commutation relations which are 
consistent with the field equations (3,1). In the conventional 
theory one postulates the commutation relations of the field func­
tions at all points of a space-like surface, and one shows that 
these relations still hold on any other space-like surface. This is 
possible because the field equations have one and only one solu­
tion for any arbitrary initial conditions given on a space-like sur­
face. It is not easy to see what the corresponding problem is for 
the field equations (3,1). On the one hand, the knowledge of the 
field functions on a space-like surface is not sufficient to define 
the field functions even in the neighborhood of the initial surface. 
On the other hand, it is not clear that the field functions can be 
given arbitrary values on a space-like surface. This makes the 
extension of the canonical method of quantization difficult.

The situation, however, simplifies if one considers a space­
like surface very far in the past or very far in the future. Because 
of the assumption that the interactions are negligible in the distant 
past and future, the commutation relations on such a surface 
must in the limit be identical with the conventional commutation 
relations of free fields. This suggests that the quantization method 
to be used in the present case will be to postulate the commutation 
relations for the asymptotic values of the field functions for 
.r4 —> dz 00 •

The most convenient mathematical method to find the solu­
tions of a differential system with given boundary values is to 
transform the system into a system of integral equations by means 
of the Green’s functions corresponding to the boundary values con­
sidered. The boundary values that we have here are the values 
for X'4-* — x . The corresponding Green’s functions are the re­
tarded ones defined bv
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(’'%45+m)s+(x) = _a(x)’
(—  + nF)D+(x) = - ó(,r), 

and S+(.r) = ¿>+(æ) = O if æ4 < 0.

(4,1)

As it will be important in what follows that the interaction term 
vanishes before and after the collision, it is necessary to use the 
renormalized interaction

¿I = Li - \ dx (zl M‘ y> + «2j ;

and in order to simplify the writing we shall introduce the nota­
tion of variational derivatives. The field equations (3,1) read then

= 0,

o,dxL

0,

where, for instance,

ôip+ (.r)

(4,2)

ÔLT c
, z \ = g\dx"dx"F(x, x", x,"}ii(x")y)(x"'}— AMy)(x), etc. •• 

ôy> ‘ (.r)

Using now the retarded Green’s functions we can transform the
system (4,2) into the equivalent system of integral equations

C , 0Liy>(x) = ^,n(.r) + )d.r'S+(.r - .r ) ôy)+ 

y>+(x) = yi+u\x) F^dx'" —^t^ST(x — x"') 

u (.r) = uin(,r) 4- jj dx" D+(x — x") ô-

(4,3)

where the fields y"1 and uin satisfy the free field equations. The 
retarded Green’s functions are different from zero only inside the 
past part of the light cone, and as we assume throughout that the 
interactions are negligible far in the past, we see that the second 
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term in ('(¡nations (4,3) becomes very small as .r4->- x . It fol­
lows that the fields y111 and um represent asymptotically and u 
as ,r4>— x . They describe the incoming particles.

The integral equations (4,3) can formally be solved by itera­
tion to all orders of approximation for arbitrary incoming fields. 
Il is natural to postulate that the incoming fields satisfy the con­
ventional commutation relations of free fields

y'O.v,). V"’(.r2)j + = lv>+ln(.r1), V+"‘(.«O].. = <»,
(■>■>), V ü'(.r2)]+ = yoOi- a>).

V'h,(.r,). «'"(.?,)] - yih‘ «"'(x2)J = 0, 
zG/in(.r1), u,n(.r2)] = (ay — ,v2),

(4,4)

where [A, B] — AB — BA, [A, B] + — AB BA. The commuta­
tion relations (4,4) are clearly consistent with the field equations 
(4,3). llie commutation relations of the fields and u can in 
principle be deduced from the relations (4,4) with the help of 
the field equations (4,3).

The above considerations can be repeated with the boundary 
conditions for a-4—>4-oc. We introduce the advanced Green’s 
functions S_ and D_ which satisfy the same equations as the re­
tarded Green’s functions but vanish for ,r4 > 0. They lead to the 
integral equations

i C^(.v) = V’° (.r)+\da'S_(.r- .r') , ,
mp 1 (a )

^+(a) - r ou,(.r) IIIX ), (4,5)

u(.r) = ;/oul (,V) + yl.v"J) -(.’v ~~ x")j^7x"y 

where y)out and u0"1 are free fields, which are asymptotically 
identical with yi and u as .r4 ^ + x , and represent the outgoing 
particles. The outgoing fields should, of course, satisfy also the 
free field commutation relations. In fact the commutation rela­
tions of the outgoing fields can in principle be deduced from the 
commutation relations of the incoming fields with (he help of 
the equations (4,3) and (4,5). We have to show that the relations 
obtained in this way are similar to the relations (4,4).
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This can easily be done with the help of the constants of col­
lision defined in the preceding section. I hese constants can be 
computed with the incoming or outgoing helds. For instance, the 
total electric charge before collision is given by

Q(in) = ie{(laryrmyl'y)"\
• a

where g is anv arbitrary space-like surface. I he same applies to 
the energy-momentum and the angular momentum before and 
after collision, and the conservation equations read now

G" (in) = Gft (out), Q (in) = Q (out),-• • (4,6)

It is a well known property that the commutator of any incoming 
field function with an incoming constant of collision is related 
Io the corresponding infinitesimal transformation by the equa­
tions

T, (/"(in)] = — i

. , .dA
A, Q (in)] = - i • •O <c

(4,7)

for anv incoming field quantity A. In the second equation (4,7) 
a is the parameter occurring when use is made ot an arbitrary 
gauge (y,n is proportional to eiea, is proportional to e“I£K and 
um independent of «). A similar equation connects the angular 
momentum of the system and the infinitesimal Lorentz transfor­
mations. It is easily seen that il two quantities A and B satisfy 
the relations (4,7), A + B and AB satisfy the same relations. It 
follows that any quantity which can be built by algebraic opera­
tions from quantities satisfying the relations (4,7) also satisfies 
these relations. In particular the outgoing fields satisfy the rela­
tions (4,7), and taking into account the conservation equations 
(4,6) we get

[.4, O'* (out)] = - Í, etc. - • • where .4 = v>+o,,t. or <f"a- (4,8)

From these relations it can be deduced that the commutation re­
lations of the outgoing fields are similar to the relations (4,4). 
Phe detailed proof is given in the appendix.
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In the present theory we have been using the Heisenberg 
representation. The situation of the particles before a collision is 
described by certain operators, the incoming field functions, and 
by a certain state vector Y7 in Hilbert space. After the collision 
the operators are changed into the outgoing field functions, but 
the state vector remains the same. In the interaction representa­
tion the initial situation is described by operators which can be 
identified with the present incoming field functions and by a 
state vector ’/'(in) which can be identified with ’/'. The situation 
after the collision is described by the same operators, but by a dif­
ferent state vector ’/'(out). The unitary matrix S which transforms 
’/'(in) into ’/'(out) according to ’/'(out) = SY7(in) is the collision 
matrix, and the squares of the absolute values of its elements give 
the transition probabilities. The situation after the collision could 
as well be described by the state vector 1 ’/'(out) = ’/'(in) and 
the operators 5“1 S, S 1 uinS, • • •. Ina theory with a localized 
interaction the formalisms using the Heisenberg representation or 
the interaction representation are of course equivalent, so we 
must have

v-out = uol,t - VbAS. (4,9)

If the interaction is noil-localized we do not know the interaction 
representation. However, as the outgoing fields satisfy the same 
commutation relations as the incoming fields, we know that there 
exists a unitary matrix 5 satisfying the relations (4,9). It is then 
natural to define this matrix as the collision matrix.

The equations (4,3), (4,4), (4,5) and (4,9) give a complete 
self-consistent formulation of the theory. These equations can, in 
principle, be solved by successive approximations. In fact, we 
need practical rides giving a way of computing any matrix element 
of S. Such rules will be given in the following sections.

5. Solution of the field equations.

We shall first consider the case where the1 interaction is a con­
ventional local interaction

M = (j dxH^x),

where
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77I(.r) = gip4 (x)u(x)ip(.r)— AMip (æ)y’(.r)— (A m2/2)u2(x).

We assume thal Ihe solution of the field equations (4,3) can be 
expanded into powers of the constants g, AM and A m2, and we set

^(.r) = ¿ (—u(æ) = ¿( i)nu(n)(x), (5,1)o o
where ip^ (x) and n(,e> (.r) are of the order n with respect to the 
constants g, AM and A m2. The zero order approximation is of 
course given by the incoming fields. The first order approxima­
tion is easily computed, and the value of ^(1), for instance, is

/• < T in
q<fc'S+(*-«')^q7). (5.2)

where L“1 is equal to Lr with the field functions replaced by the 
corresponding incoming field functions.

It is well known that the function 8 occurring in the commu­
tation relations is connected to the Green’s functions by

8 (x) = 8_ (<r) — 8+ (x-) .

As 8+(.r) vanishes if .r4<0, and 8_(.r) vanishes if x4>(), it 
follows that

S+ (.r) 8(.r) i

= 0 i

f .r4 > 0,

f x4 < 0.
(5,3)

Similarly

$_(*) 0 i f .r4 > 0,
\ (5,4)

- 8(.v) i f ,r4 < 0.

Similar relations hold for the I) functions.
The relations (5,3) show that the expression (5,2) can also 

be written

or still

‘ X* > X'1
(5,5)
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Similar formulas hold for yr'1'(x) and zz(1'(.r). The generalization 
of these formulas to higher orders is obvious. Let .4(.r) be any 
field function; the term of order n in its expansion is given by

A1'" (.r„) = l¡ • ■ • </.v„ [ ■ ■ ■ [[A'“ (.r,), II,,], «,],••• H„], ( 5,6)
• .r0 > .tj > • • • > x„

where J/n has been written for /7jn(.rn), and .r,- > a*y for a-y > a-y. 
Formula (5,6) is well known in field theory, and is usually de­
duced from the Schrôdinger equation. It can also be obtained 
from the field equations (4,3) by induction (see appendix III).

The next step is the calculation of the outgoing fields. We 
again assume expansions in power series

yzout(.v) = — zzol,l(.r) = ¿ (-z)n zzol,l(,,)(.r). (5,7)
o “I?1

By subtraction of the equations (4,3) from the equations (4,5) 
we get for the outgoing fields the expressions

V’°ul (a-) = (,r) — Ç dx' S(x — .?') r~ ~, etc. • • • .
dyr (x )

The zero order approximation is thus given by the incoming 
fields, and the first order approximation is readily found to be

-/"""“O) = [V"’ (•>■). //¡"(.r')], (5,8)

and similar formulas for y;+oilt<1) and zzoul(1). These formulas can 
be generalized by induction, and it can be shown that the term 
of order n of any outgoing field quantity .4<HIt is given by

A'’"l,'"(.r) = Liiv/.r.-• [[•••[Aln(.r), W,], W2],■■■//„ ] .(5,9)
• .r, > .rs > • • • > x„

We shall now extend the preceding expressions Io the case of 
a non-localized interaction. It will be convenient to write* the inter­
action term in the form

= \dx'dx"dx'" H^x', x", x'"),

where
H^x', x", x'") = (jF(x\ x”, x"')y>+(x')u(x")y>(x''') I

(5,10 
ó(.v'- .r )ô(.v" — a '") {/A M y^ (x')yd-v'") - (Zl zn2/2)zz2(.r")}. |
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The first order terms can be completed as in the preceding case,
and are given by

V’(1) (x) = \dx'dx" dx'" [ipm (.r), H1(x', x", x'")]
*x > x'

V’+(1)(.r) = \ dx'dx"dx"' [ip+in(x), Hj^x', x", x'")]
' X > x'"

u(1) (.r) = ( dx'dx"dx'" [z/in (.r), H'Cx', x", x'")]
• X > x"

(5,11)

It should be noted in these formulas that the domain of integra­
tion of only one of the three variables occurring in Hi is restricted 
by an inequality. This variable is different depending on the field 
function which is being computed; it is the variable of the field 
function which does not commute with the field function which 
is being computed. This is because the inequalities appear when 
a Green’s function is replaced by a commutator (or anticommu­
tator) of two field functions. This complication makes il impossible 
to extend directly the formulas (5,6) and (5,9).

Il will be convenient in what follows lo make use of some 
conventions and notations. We shall always call x' (sometimes 
provided with an index) the argument of a function ip, x" the 
argument of a function u, x"' the argument of a function y. 
We shall write for ipin(x'j"), un for um(x''), for ^+in(.r,'l), 
and ldn for (x'n, x„ , x¡" ). Finally, will stand for the three 
points x'n , x'r', x"', and d£n for dx'n dx" dx'''.

We shall now try to extend the formulas (5,6) and (5,9) lo 
the case of a non-localized interaction. These formulas are ob­
tained from the field equations by a certain number of algebraic 
operations: additions, multiplications, integrations. The same op­
eration can be performed as well with a non-localized interaction, 
and the result should be very similar. The only différence, in fact, 
lies in the inequalities.

This leads us to consider also in the case of non-localized 
interaction expressions such as

= [•••[[V’o, #1L -

If we develop En by computing first the commutator of with 
H1, then the commutator of the result with H2, and so on, the 
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result is a sum of terms T, each of which is a product of form 
functions, of field functions, and of n “elementary” commutators 
or anticommutators such as [tpf, or u¡]. These commu­
tators (or anticommutators) associate some of the variables 
.r' , x", • • • by groups of two. For instance, the two elementary 
commutators mentioned as examples associate .r' with xj", and 
x" with x'j', respectively.

Let us call 7(7’) the set of inequalities expressing that in all 
the groups of two variables associated by the elementary com­
mutators or anticommutators of the term T, the variable with the 
lower index should correspond to a time later than the variable 
with higher index. There are n inequalities for each term T. 
They define a domain I)(T) which is different for every term. 
The same decomposition can be performed in the case of a lo­
calized interaction, with the only difference that the form functions 
disappear and that x¿ = x¿' = x¿" = xf.

It can easily be seen by analyzing the way in which the suc­
cessive approximations are obtained from the field equations in 
the case of a localized interaction, that the terms of the order n 
appear at first as sums of products of field functions and of n 
Green’s functions. The next step consists in replacing the Green’s 
functions by the corresponding commutators or anticommutators. 
The domains of integration must then be restricted by certain in­
equalities. 'fhe terms obtained in this way are precisely the terms 
7’obtained by decomposition of 7:n, and the inequalities associated 
with each term are clearly the inequalities 7(7’). By a further 
transformation it is possible to replace the inequalities I(T) by 
the inequalities l:x0 > .^ > • • • > xn. Since the domain of inte­
gration is then the same for all the terms, it becomes possible to 
put the sum of all the terms 7’ into the compact form 7sn, and one 
gets the final formula (5,6). In the case of a non-localized inter­
action all the operations can be performed in the same way, ex­
cept the last transformation. Thus, we must try to extend to the 
case of a non-localized interaction the expressions of the success­
ive approximations as sums of 7’ terms.

A few definitions will be useful.
We shall call 7J(7’) the set of all the permutations of the in­

dexes 1, 2, . . . n such that in every inequality of 7(7’) the variable 
indicated as corresponding to the later time keeps an index lower 
than the index of the other variable.
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;V(T) will be the number of the permutations of P(T) (unity 
included).

Finally we shall call terms equivalent to T the terms deduced 
from T by a permutation of the indexes belonging to P(T).

These definitions apply as well to localized and non-localized 
interactions.

As an example, let us consider the following term of E4 (the 
form functions have not been written down):

T = Jm2/2) [^0’^3+ ]+[«!’ ^4^2’

which is one of the terms coming from the terms in g of Hx, H2 
and H4, and from the term in (—Zlm2/2) of H3. The inequalities 
I(T) are

I ( 1 ) : > -r2 ’ æl > r3 ’ X*2 > -r4 •

'fhe permutations P(T} are besides unity the permutations (2,3) 
and (3,4) which transform the inequalities I(T) into

fhe following properties are easily shown:

a) Equivalent terms integrated over their associated domains 
give identical results.

b) If T belongs to the development of En, all the terms equi­
valent to T also belong to the development of En.

c) In the case of a localized interaction (a?' = x" = x'"), the 
domain D(T) is the sum of the domain 1) defined by I : .r0 > .r, > 
• • • > .r„, and of the domains deduced from D by the permuta­
tions of P(T).

As an example of property c), the domain

/J(T) : æo > .r4, x*! > .r2, .r4 > .r3, x2 > x4

is the sum of the domains

1) : x0 > æi > æ2 > æs > æ4> (2,3)79 : x0 > x4 > x3 > x2 > .r4,

(3,4)79 : x‘q aq Z> x2 a?4 x3.

It will now be possible to make a precise comparison of the 
expression (5,6) with the development of En. According to b) 
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the terms in the development of En can be collected into families 
of 7V(T) equivalent terms. From a) and c) it follows that the sum of 
N(T) equivalent terms integrated over the domain I) is equal to 
any one of the terms of the family integrated over its associated 
domain. As we know from (5,6) that y>(n\x0} is the sum of all 
7’ terms integrated over the domain D, we see that

= x (1/AT(T)) ( Jaqd.ra • • • d.r„ 7’, (5,12)
T 'D(T)

where the summation is extended to all the terms 7’ of the devel­
opment of En. One could also omit the factor l/ïV(71)and instead 
say that only one term in each family of equivalent terms should 
be taken into account, and it is easily seen that this is exactly 
the expression obtained by a straightforward calculation from the 
field equations.

The extension to the case of a non-localized interaction is now 
obvious, and we shall write symbolically

V(,,) (.To) = ( rffidfs •■•</£„[••• [[</'"’ «'), WJ, KJ • ■ • HJ, (5,13)
• t

where \ is a “time ordered integration” and should be computed 
in the following way:

a) The integrand must be developed into a sum of 7' terms.
b) Each term should be integrated over the domain D(T).
c) Each integral should be multiplied by 1/.V(T).

The formulas (5,11) are (dearly particular cases of (5,13). 
The general formula can be obtained directly from the field equa­
tions by induction (sec appendix III). The outgoing fields are 
given by formulas differing from (5,13) only by the fact that all 
inequalities involving x'Q, x'Q', or .t'o" should be omitted. In order 
that the indexes should remain specifically connected with time 
ordering, it is convenient then to suppress the index 0 and to 
write

you,<n)(x'") = ... ,/£ri.;... (5,14)

The domains of integrations are now independent of the points 
at which the field functions are being computed. This gives the 
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possibility of a useful generalization of the equations (5,14). Let 
Ain be a polynomial of the incident field functions or, more gener­
ally, a power series. The field functions can be taken al different 
points, and A will depend on a certain number of points in space­
time. The value of the same polynomial (or series) of the out­
going field functions taken at the same points is given by

Aout = ¿(_zyAout(n), (5,15)

where n = 0

Aout(n) = ... [Ain, (5,16)

The proof is given in appendix 111. As an example, let us take 
for Ain the expressions [tp+m(x'), ipin{x'")]+, [^'rin(.r'), uin(x")], 
etc. • • • As these quantities are c-numbers, all terms in the ex­
pansions (5,15) vanish, except the first term. Thus, Aout = A111, 
and this proves again that the commutation relations of the out­
going fields are the same as those of the incoming fields.

A few remarks should be added to the results of this section.
1. Lorentz invariance. The domains D(T} arc not Lorentz in­

variant. If the vector joining aq and x¡ is space-like, the time 
ordering of the two points has no invariant meaning. This time 
ordering matters for a term T only if T has as a factor a commu­
tator (or anticommutator) of two field functions at the points 
and Xj. As this commutator (or anticommutator) vanishes if 
x{ — Xj is space-like, it is seen that the integrated formula is 
Lorentz invariant.

2. The Schrôdinger equation. Let us consider in the case of a 
localized interaction the field functions taken at arbitrary points 
on a space-like surface a. In the equations (5,6) the inequality 
.r0 > æi can without changing the value of the integral be replaced 
by the condition that aq should be in the past region of space-time 
with respect to a. Thus, the domain of integration in (5,6) can 
be chosen in such a wav that it is the same for all the field func­
tions on all points of a. It follows that if Ain is a polynomial of 
the incoming fields taken al various points of a, the same poly­
nomial of the fields ip+, a and ip taken at the same points is given 
by an expansion similar to (5,15), where the term of the order n 
is given by

Dan.Mat.Fys.Medd. 27, no.8. 3
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A(n) = ( dxplx2 ■ ■ ■ dxn [ • • • [[Ain, Hy], H2] ■ Hn].
«'(T > Xj > i-2 > • • • > X„

If A is a commutator (or anticommutator) of two field functions, 
it is seen that A = Am. Thus, the commutation relations of the 
field functions on « space-like surface a are identical with those 
of the incoming field functions. Hence, a unitary matrix «S (— x , u) 
exists such that

A(æo) = 5_1(—» , <r)Ain(æ0)S(—=o , u), (5,17)

where A is xp+, u or y and .r0 any point on a. The Schrôdinger 
equation is (in the Tomonaga—Schwinger form(1'>)) the differ­
ential equation giving the variations of S(— x , cr) corresponding 
to infinitesimal variations of the surface a.

In the case of a non-localized interaction, it is not possible 
to use the same domains of integration for computing all the field 
functions on a space-like surface. The equations (5,11), for in­
stance, show that for the first order terms already, the domain of 
integration unavoidably depends on which field function is being 
computed. Then the commutation relations of the field functions 
on a space-like surface are not the same as those of the incoming 
fields, and there is no matrix satisfying the equations (5,17). This 
explains why there cannot be any Schrôdinger equation if the 
interaction is non-localized, and shows that one has to use a 
formalism giving directly the matrix S = S(— oc , -f- x).

6. Outgoing operators.

Before starting any actual calculation, it is necessary to anti­
symmetrize the Lagrange function in ip and ip+ so as to introduce 
the correct interpretation of the negative energy states as anti­
particles. Thus, the expression (5,10) for the interaction term 
should be replaced by

Hl{x', x", x'") =

(y/2)FÇr, x x"') (yj\xf)u(x")ip(x'") ip(x"')u(x" (,r'))

- ô(x' — x")ô(x" — x'") {(zLW/2) (y+(.r')y(.v'") —-y (.r”') ^^(.t')) 

(A in2/2)u2(x")}.

(6,1)
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This clearly does not modify the general conclusions of the pre­
ceding sections. In particular the rules given for the calculation 
of the outgoing fields still apply.

The Fourier expansion of any free field is a superposition of 
plane waves elKx, where K is always a time-like vector. Hence, 
it is possible to split in a Lorentz invariant way any field function 
in two parts for which A4 is positive or negative, respectively. 
Thus, we can write for the incoming fields (in what follows the 
incoming fields will be called ip and u without the subscript in)

In the decomposition (6,2), ip^ and -* are annihilation and 
creation operators of nucleons, respectively; and tp<~are 
annihilation and creation operators of antinucleons; and 
are annihilation and creation operators of mesons^11). These 
operators are related to one another by the equations

(y/ + ))+ = \ (y/ ))+ = ip ' < + \ \ (6,3)

The operators introduced in (6,2) commute or anticommute ex­
cept creation and annihilation operators of the same particles. 
For these pairs of operators the commutation relations are

^+)(æl)» VÇ (_) (æ2)] + = 0-1- æ2) ,

(æl), v£( + )(æ2)] + - æ2),
Í[«(+)(íEi), «<_)(æ2)] = íC'fr, -- æ2),
i [u(_) (æi), u(+)(æ2)] - æ2),

(6,4)

where and and * are the positive and negative
frequency parts, respectively, of S and D.

An important notion in field theoretical calculations is that 
of “ordered product” of operators'1 . It is defined as follows:

a) The ordered product: abc • ■ : of the creation or annihila­
tion operators a, b, c- - - is equal to the product abc- • • re-ordered 
in such a way that all annihilation operators are al the right-hand 

3* 
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side of the creation operators, multiplied by (—)p, where p is the 
number of permutations of nucleon operators involved in the re­
ordering procedure.

b) The definition is extended to products of field functions 
by decomposing the various factors into sums of creation and 
annihilation operators, and by postulating the distributivity of the 
ordered product with respect to addition.

The importance of the ordered products comes from the fact 
that when an ordered product acts on a state vector a particle 
cannot be created by one of the factors and reabsorbed by another 
factor. Thus, all virtual particles have been eliminated, and it is 
easy to select the relevant terms for a particular problem. In this 
connection it is important to be able to transform any product of 
operators into a sum of ordered products. This is most conven­
iently done by introducing the notion of “contractions.”

For two field functions a and b the contraction a'b' is defined 
as the difference between the regular and the ordered products 
bvv 7

ab = tab: + a'b'. (6,5)

The only non-vanishing contractions arc given by the following 
relations which are easily deduced from (6,4)

Vq ' (æi) ví ' W = (— 0 sÿ (æi — æa) » 
v£-(æ2)v(æi) = (—— x2),

ZZ- (æOu- (t2) = (— Z)D( (— ;r2).

(6,6)

A contraction within an ordered product is defined by 

: a - • ■ be' cl • ■ ■ ef' g : = (—)p c' f' :a • • • bd eg ••• :, (6,7) 

where p is the number of permutations of nucleon operators 
necessary in order to bring the factors c and /’beside one another.

The transformation of a product of field functions into a sum 
of ordered products is now given by the following identity(16) :

abed • • • = : abed • • • : + ’ b ' ed ■ • • :, (6,8 )

where the summation is extended to all possible contractions of 
the factors a, b, e, • • •

(*) This definition is that of Houriet and Kind(,6>.
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It should be noted finally that the order of the factors in an 

ordered product can be changed arbitrarily, with only a change 
of sign if an odd permutation of the nucleon operators has been 
performed.

The results of the preceding section together with the identity 
(6,8) make it possible to express any function of the outgoing 
operators as a sum of ordered products of incoming operators. 
Each term may be associated with a doubled Feynman graph. 
The rides will now be given for a single outgoing operator. These 
rules generalize some of the results obtained by Dyson<17).

Graph. A graph consists of directed lines (nucleon lines), of 
undirected lines (meson lines), and of vertices of the following 
types :

a) ^-vertices consisting of three points x , x", x"' on a small 
circle with an undirected line arriving at x", and two directed 
lines arriving at x' and .r"', directed away from x' and toward x'"

b) d uz2-vertices and d AZ-ver tic es consisting of a single point 
with two undirected lines or two directed lines of different direc­
tions, respectively;

c) one incoming vertex consisting of p points with a line ar­
riving at each of them;

d) one outgoing vertex consisting of one point with one line. 
The line arriving at the outgoing vertex is an undirected line, a 
line directed toward the vertex or a line directed away from the 
vertex, depending on whether the field function which is being 
computed is zzout, y»out or y"' out.

Doubled graph. Some of the lines of the graph must be con­
sidered as doubled lines. The doubled lines should be drawn in 
such a way that it is possible to go from any vertex (the incoming 
vertex excepted) to the outgoing vertex by a uniquely defined 
path consisting of doubled lines only. This can be pictured by 
saying that all vertices except the incoming vertex are lying on 
the branches of a “tree” having its root at the outgoing vertex 
and forks at some of the (/-vertices. It follows that all graphs are 
connected, and it is easily seen that the number of doubled lines 
is equal to the number of vertices, incoming and outgoing ver­
tices excluded. The lines arriving at the incoming or outgoing 
vertices will be called incoming or outgoing lines.
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Orientation of the graph. The doubled lines and the incoming 

lines are oriented toward the outgoing vertex. livery «/-vertex 
should be oriented in the following sense. At every «/-vertex arrive 
one double line oriented away from the vertex and two other 
lines I], l2- To orient the vertex means to draw an arrow from one 
of the lines Z1} l2 toward the other, in an arbitrary way. Consider 
finally an undoubled line joining two vertices a and b. It is pos­
sible to go from a and b to the outgoing vertex by following 
doubled lines only. The two paths meet at a vertex £. The line 
ab is then oriented according to the orientation of £.

Examples of such graphs will be given in the next section 
(see Fig. 2).

To each graph corresponds a term in the development of the 
outgoing operator. It is an integral of a product of terms associated 
with each line and each vertex of the graph. It is convenient to 
use the energy-momentum variables. A four-vector k is then as­
sociated with every line of the graph, and the various factors will 
be listed now.

We shall write only the factors corresponding to the undirected 
lines from which the factors corresponding to the directed lines 
can be deduced by replacing m bv 3/ and by multiplying by 
(,V'7„ M) or ( - ik^y —3/) depending on whether the orienta- 
tion and the direction are parallel or antiparallel.

a) For the doubled lines (except the outgoing line) the factor is

D+(k) = (— l)/(Â,a + m2), or S+, or 5_, (6,9)

where the integration with respect to Á’4 should be taken in the 
complex plane along a contour passing above the two singularities.

b) For the undoubled lines the factor is

7)(+)(Â) = (—tt) (1 + e(Å’))0(Å'2 + 7272), etc. •••, (6,10)

where e(Á) is + 1 or — 1 depending on whether Å4 is positive or 
negative.

c) For the outgoing line the factor is

D(k) = (— 2 i cr) € (k) ö ( k2 + m2), etc. • • •. (6,11)

d) Finally, to the incoming lines is associated an ordered
product of factors u. (k) Ô (k2 + m2), (k) b (k2 + 3/2), or
y(k') ô(k2 M2), where
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u(k)ó(k2 + th2) = ( cte uin (æ) e lfcc, etc. • • •.

J

To each undirected line, to each directed line with direction and 
orientation parallel or antiparallel corresponds a factor u, ip or 
ip+, respectively.

The factors corresponding to Am2-, A Af-, and (/-vertices are 
in the case where all lines are oriented toward the vertex

( A m2/2)ö(k1 + k2), —AMô(k1 + k2), and 

((//2)0(Á', k", k'")ô(k' + k" + Å-"') = 

((//2) (27t)—6Ç dl-F(x', x", x"')el('kx +"\

where k', k", k'" are the vectors associated with the lines arriving 
at x', x", x". For every line oriented away from the vertex, k 
should be replaced by —k in (6,12).

Finally, summation should be made over the spinor indexes, 
the term should be multiplied by 1/N(T) and a certain power of i, 
and integrated over all variables. The outgoing operator is ob­
tained by taking into account all possible graphs and all possible 
orientations of the vertices.

As for the justification of the preceding rules we only mention 
that the doubled lines correspond to the elementary commuta­
tors, and the undoubled lines to the contractions. The orientation 
of a vertex corresponds to the effect of the choice of a term y+ nip 
or ipuip+ in the interaction term (6,1) on the order of the operators 
occurring in the T-term.

The extension to products of outgoing operators is obvious. 
The only change is that there will be an outgoing line correspond­
ing to every factor of the product. These lines are oriented with 
respect to one another in the following way: the orientation goes 
from the line a to the line b when the factor corresponding to a 
in the product is at the left of the factor corresponding to b.

7. Self-energies.
It has been assumed throughout that A M and A m2 are chosen 

in such a way that the interaction term is negligible when the 
particles described by the field are far apart. We shall now com-

(6,12)
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pute the values of zLW and /I m2 for which (his assumption 
holds.

An equivalent, but more precise formulation of the same as­
sumption is to state that the interaction term should be rigorously 
negligible if the system contains zero or one particle. In the 
interaction representation this fact is described by the equation 

s|) = |). (7.1)

where | ) is the vacuum stale or a stale in which only one particle 
is present. The corresponding properties of the incoming and 
outgoing fields follow from

AolIt = S*AinS, (7,2)

where A is any field function. In order to avoid complicated nota­
tions we shall use a simplified model in which states are charac­
terized only by the number of particles. Moreover, we shall as­
sume the existence of only one kind of particles. The basic vec­
tors may then be represented by | 0), | 1), • • • | n), • • • , where | n) 
is the state in which n particles arc present. In this representation 
the conditions (7,1) read

(n|S|0) = dOn, (n |s| 1) = <5ln, (7,3a)

where ônm is 0 if in n and 1 if m = n. From the unitarity con­
dition of S it follows that

(0|S|n) = óOn, (1 | S | n) = óln. (7,3b)

The relation (7,2) can be written

(z | Aout |;) = Y (i I S :‘ I m) (m | A1111 n) (n |S|j). (7,4)
777, 77

For y = 0, the equation (7,4) specializes into

(z| Aout|0) = ¿1(/|S:i:|m) (m|Ain|0), (7,5)
m

where the conditions (7,3) have been taken into account. If A 
is a pure annihilation operator A<+\ then A(+)in I 0) = 0, and from
(7,5) it follows that

A(+)°ut|0) = 0, (7,6)



Nr. 8 41

which is the equation of conservation of vacuum. If A is a crea­
tion operator A(—), its only non-vanishing matrix element is 
(1 I A(—)in|0), and from (7,3) and (7,5) it follows that

A(_)out|()) = A(~)in|0). (7,7)

Putting now / — 1 into (7,4) we get

(z| Aout| 1) = £(i I S*|m) (m I Ain I 1), (7,8)

and a simple relation is obtained only if A is an annihilation 
operator. It follows then from (7,3) and (7,8) that

A(+)out| 1) = A(+)in| 1). (7,9)

No simple relation is obtained for j > 1. The relation (7,9) is in 
fact a consequence of (7,6) and (7,7), and of the commutation 
relations

(7,10)

On multiplying (7,10) on the right-hand side by |0) and on taking
(7.6) into account we get

4(+)outA(-)out|()) = A(+)inA(-)in|0). (7,11)

The equation (7,9) follows from (7,11) if one takes into account
(7.7) and the fact that A(—),n|0) is a multiple of | 1). Thus, the 
basic relations are (7,6) and (7,7). It is in fact a matter of simple 
algebra to show that, conversely, these relations have the rela­
tions (7,3) as consequences (apart from an irrelevant phase 
factor).

For the actual system, equations similar to (7,6) and (7,7) 
should hold with A = ip+, u or ip. We shall see that the equations 
(7,6) are identically satisfied, whereas the equations (7,7) define 
the self-energies AM and Am2.

Let A be any of the field functions. The Fourier component 
Aout(Á) is, according to the results of the preceding section, given 
by a sum of terms

A°“‘(t) = X i dki ■ ■ ■ dkiK^kt, ■■ ■ k,) :«,(*,)•(7,12)
Il •’



42 Nr. 8

where A'n is a c-number function, and where the At- satisfy

A- = 21 h, + mi = (7,13)

Only the creation parts of the operators a will give contributions 
to Aout|0). Thus we may in (7,12) restrict the domain of integra­
tion to the vectors k such that

7q<0. (7,14)

If A = A(+) is an annihilation operator all its Fourier components 
are such that Á-4 > 0. It follows then from (7.13 and 7,14) that 
4<+)out|Q^ vanishes identically.

We consider now the case where A = A<—) is a creation 
operator. Then Kn vanishes except for k such that

k2 + /i2 = (), Å4 < 0,

where // is the mass of the particles described by the field A. 
From k = kt it follows that

| fe [ 2 I kj I, and

(Á-4)2 > £ (k¡)2 + 2 ¿ ^¡111,.,
i<k

where it has been taken into account that all k- arc negative and 
have as minimum absolute values. From these two inequalities 
it is easily deduced that

(7,15)

Finally, we shall also need the remark that if A = ii, there 
will be among the operators a as many ip as ip+ ; if A = y> (or yi+) 
there will be as many ip as ip+ plus one odd ip (or y+).

It follows that if A = ip (or ip'), one of the nq in (7,15) must 
be equal to 4/ = //, and we get a contradiction if we assume the 
existence of more than one n?¿. Thus, contributions to y/-•*out|0) 
come only from the terms in which there is only one operator 
«i = V-

If A = u and if we assume that an a is equal to u, the same 
argument applies and there cannot be any other factor a. The 
possibility of all a being nucleon operators is ruled out by (7,15) 
if m < 2A/(*\

(*) If in > 2A/, spontaneous decay of a meson into a pair of nucleons be­
comes possible, and one cannot expect the equation (7,1) to hold for a state in which 
there is one meson.



Nr. 8 43
Thus, in all cases, the only terms in (7,12) giving contribu­

tions to Af—)out|0) are those which contain only one a = A. For 
these terms Kn is a Lorentz invariant function of one argument 
k only, satisfying the equations

(Á-2 + m2)K = 0, or (ik^y + J/)Æ = 0, etc. • • •.

Hence Kn is proportional to

= (1 — e(Á-))ó(7<2 + in2), or S(_)(Å’), etc. • • • , 

and if we write A)t(£) = KnD(~\k), etc. ■ • • we obtain, correspond­
ing to the equation (7,7), the scalar equations

2)Æn = 0. (7,1 G)

As the equations corresponding to ip and xp^ are not distinct, we 
have two equations defining AM and Zl/n2.

We shall now investigate the convergence of the integrals oc­
curring in the Kn. Each Kn corresponds to a self-energy graph 
(graph with one incoming line and one outgoing line) and is given 
by the rules of paragraph 6.

First of all some of the integrations should be carried out in 
order to eliminate all the ö functions introduced at the vertices 
except one 0(kin— Àout) which expresses the conservation of 
energy and momentum between the incoming and the outgoing 
lines. These lines can be considered as associated with a fixed 
vector k0 = km = kout. There is some arbitrariness in the choice 
of the variables which should be conserved. We shall show that 
one can always take as independent variables of integration the 
vectors p¿ associated with the undoubled lines. We have to show

a) that no relation such as = 0 can exist,
b) that every vector k associated with a doubled line can be 

expressed as k — AzPi, or k — k0A~ ± P¡-

It is easily seen that every relation Az kfAz p¡ = 0 can be 
represented on the graph by a closed curve C leaving the incoming 
and the outgoing vertices outside and cutting the lines associated 
with the k\ and the involved in the relation.

The assertion a) follows then from the fact that no line C can 
cut undoubled lines only (the vertices inside could not be con­
nected with the outgoing vertex by means of doubled lines).
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The assertion b) follows from the fact that it is always possible 
to draw a line C which cuts a given doubled line and no other 
doubled line except, maybe, the incoming line (this is a conse­
quence of the tree-like structure of the doubled lines).

Divergences in the self-energy terms arise from two causes: 
divergences coming from the large values of the variables of 
integration and divergences due to the coincidence of several 
poles of the integrand. The latter type of divergence appears in the 
terms coming from graphs containing one or more self-energy 
graphs as sub-graphs. It can be seen that these divergences cancel 
in the sum (7,16).

The real self-energy divergences come from the large values 
of the variables pf. At every (/-vertex, the form function intro­
duces a convergence factor 0 (6,12). We can assume that 0 which 
is a function of À*'2, k"2 and k'"2 falls off very rapidly as any of 
these arguments becomes large. Consequently, we can consider that 
the domain of integration of the variables p¡ is practically limited 
to the values for which all vectors k associated with the various 
lines of the graph have bounded four-dimensional lengths k2.

The following property will be useful: if a time-like vector 
k has a bounded scalar product with a fixed time-like vector k', 
its four components arc bounded. This is easily seen in a frame of 
reference where k' reduces to a time component. More precisely, 
it can be shown that

|fe| < A(|*'| + p'‘|)/|(C)2| (7,17)

if I kk' I < A.
In every graph the undoubled lines will form a certain num­

ber of connected arcs. If there are two such arcs connected with 
the incoming and the outgoing lines, we shall call them Lin and 
L0llt; the other arcs will be called Ln.

We shall first consider a term which has no other undoubled 
lines than Lin and Lout. Let plf p2, ■ ■ ■ be the vectors associated 
with the lines forming Lin, starting from the incoming line, and 
// p'2 , • • • be the corresponding quantities associated with Lout. 
The functions ø limit then the domain of integration to values 
of the variables p¡ and p\ such that the scalar products

¿oPi, P1P2, P2P.3, • • • A-0/q, p'//, p'p'3, • •
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are bounded. As k0 is a fixed time-like vector and the p satisfy 
equations such as p2 + m2 = 0, it follows from the inequality 
(7,17) that the corresponding domain of integration is bounded. 
Thus, the corresponding terms are convergent, such as, for in­
stance, the second-order self-energies.

We consider now the case where there are other undoubled

undoubled line with orientation 
-¿O—• g-vertex with orientation

Fig. 2.

lines besides Lin and Lout. First of all, we know that the vectors 
associated with Lm and Loul have bounded components. The same 
holds for those vectors associated with the doubled lines which 
are linear combinations of the vectors of Lm and Lout only. More­
over, if one vector of a line Ln is kept fixed, all other vectors of 
the same line have bounded components. Some other scalar pro­
ducts will be kept bounded by the effect of the functions 0. How­
ever, for certain graphs these conditions are not sufficient, due 
to the fact that the vectors associated with the doubled lines are 
not always time-like vectors. Fig. 2 shows an example of such a 
case. It is seen that the vertices 1 and 2 give the condition that the 
scalar product of p2 with k0 — px should be bounded. The vector 
k0 — px has bounded components, but as it may be a space-like 
vector, the components of p2 are not bounded, and the correspond­
ing divergence remains.

A tentative way out of this difficulty is to assume that the 
function (P should be different from zero only if the three vectors 
k', k", k"' are time-like vectors. Moreover, we can assume that 0 
vanishes if | Å'21, | k"21 or | k"'21 are less than a fixed number which 
may be chosen arbitrarily small. The inequality (7,17) can then 
be applied to all vectors, and it is clear that all integrals become 
convergent. The assumption made here does not contradict any 
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condition previously formulated for the form functions which 
limits the non-localizability to small domains. It is, however, a 
very large departure from conventional field theory, especially 
since it makes many virtual transitions impossible, and its phys­
ical consequences should be investigated more completely.

So far, we have been concerned only with the self-energies. 
However, the matrix elements of any operator lead to integrals 
very similar to the self-energy integrals, and the investigation of 
convergence we have made is of quite general validity.

8. Final remarks.
a) Electromagnetic interactions.

When the interactions with the electromagnetic Held are in­
troduced, new terms have to be added to the Lagrange function 
so as to make it gauge invariant. The situation in the present 
theory differs from that in the conventional theory by the fact 
that the interaction term is not gauge invariant in itself.

A gauge transformation is defined by

1
A/z (,r) = (x) + , ÿ(.r) = y;(.r)eif/1, (.r) = y ~ (x)e~ ieA, (8,1

where /L(.r) is any function such that D/ll.r) = 0. It follows that

y“ (.r') (a’"') = {x')yi(x'")eie^A(-x > A(x)), (8,2)

which shows the lack of gauge invariance if the form function 
allows x' to be different from x'". On using (8,1), however, one 
can write

-I (■>■"') .1 (.>■') = \ (.4,, )</.!< (8,3)
I'C VC

where (J is an arbitrary path going from .r' to x'". Substitution 
of (8,3) into (8,2) yields

(8,4)

This equation expresses a gauge invariance property which holds 
for any path C although the invariant expression depends on the
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choice of the path. Considerations of invariance and of simplicity 
suggest taking as path C the straight line joining a-' and x"'. The 
final expression for the corresponding Hermitian gauge invariant 
interaction term reads then

(8,5)

where the integral is taken along a straight line.
The problem of finding a gauge invariant interaction term 

which in the limit = 0 reduces to (1,1) has no unique solu­
tion. A very general expression is obtained on replacing in (8,5) 
the exponential function by an integral in the functional space 
of all paths going from x' to x"' which may be written

In this expression dC is the volume element in the functional space. 
The weighting function o(C) must be normalized according to

</Co(C) = 1 ,

and such that (8,6) is invariant under all displacements.
The introduction of exponential factors into the interaction 

term can be pictured as describing the effect of the electric charge 
jumping between the points x' and x'". The path C can be con­
sidered as the path followed by the electric charge between the 
two points and o(C) as a sort of probability distribution of all 
possible paths. The function o(C), however, need not be positive 
everywhere.

The interpretation of the extra interaction term as describing 
the motion of the charge between x' and x'", that is over distances 
of the order of A, shows that its effects will, presumably, be 
small. It was, however, important to show that no contradiction 
with the requirement of gauge invariance arises from the intro­
duction of form functions. It is remarkable that the electromagnetic 
properties of charged particles are modified by the interaction 
with a neutral field when the interaction is of a non-Iocalized 
type.
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b) Transition probabilities.
The transition probability between a state a and a state b 

can, in principle, be computed as the average value in state a of 
the projection operator on state b, or conversely. The projection 
operators can be computed by the methods developed above, and 
the convergence proof holds. Practically, however, it is simpler 
to guess the lowest order terms of the 5-matrix from the equations 
(4,9) (7,8). In connection with the difficulty of solving the latter 
equations, it can be asked whether another method of quantiza­
tion would not give the S-matrix more directly. In fact, the 
Lagrangian formulation of quantum mechanics developed by 
Feynman*18' can be applied to the present problem. The result 
is quite simple: the only modification to the Feynman rules is 
the introduction of form functions at every vertex of the graphs. 
This solution, however, cannot be accepted since the correspond­
ing matrix is not unitary. A calculation, for instance, of the second 
order unitarity condition yields after some manipulations an ir­
reducible sum of terms involving factors such as 

which clearly vanish in the limit of a local interaction, due Io 
the properties of the retarded and advanced Green’s functions, but 
do not vanish in the more general case.

In conclusion, 1 should like to express my gratitude to Professor 
C. Møller for his advice and encouragement, and to Professor 
N. Boiir for the hospitality of the Institute of Theoretical Physics 
during my stay. I am indebted to Dr. R. Glauber for many help­
ful comments on the manuscript. The foregoing work was sup­
ported by the Direction des Mines et de la Sidérurgie in Paris.



Appendix I.
Definition of some singular functions.

The singular functions used in field theory are conveniently 
defined by the Fourier integral

D(æ) = _ (27t)-4( dkeikx/(k2 + m2).
r

Since the integrand is singular for k2 + m2 = 0, it is convenient 
to perform the integration with respect to Á’4 in the complex plane

along a contour avoiding the singularities. The integrand has two 
poles at Á’4 = I k2 + m2, and Á’4 = —|/A*2 + m2. The contours 
C+ and C_ (Fig. 3) yield the retarded and advanced Green’s func­
tions D+ and D_. The contour C -- C_— C+ yields the function 
1) occurring in the commutation relations. The decomposition 
C = C(+) + ) corresponds to the decomposition of 1) into the
positive and negative frequency parts and I){~\ Finally, the 
contour C(1) yields the function I)(1\

If we call zl (.r) the functions similar to the D functions where 
the mass m is replaced by M, the functions S are given by

5 (æ) = (- y" d dx/( - m jJ ( æ) •

Dan.Mat.Fys.Medd. 27, no. 8. 4
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Appendix II.
Commutation relations of the outgoing fields.

The outgoing fields are solutions of the free field equations. 
Assuming that the fields are enclosed in a large cube of volume V, 
we can expand them in Fourier series as

<“(O = V-'l-Z''KVr+(K)e,Kll + b-KrvL(K)e-‘K-, ]
K,r

uout(.r) = V^y(2k^~^(i>keikx + ^ke-ikx),
k

where K is the space part of the vector /< (A4 = + | K2 f-.l/2), 
k is the space pari of k/l(k4 = + j k2 + /n2), and (A) (/• = 1,2) 
are the positive and negative energy solutions, respectively, of the 
equations (i iA^y“ + (7\ ) = 0, orthonormalized accord­
ing to

^'■(A)^(A) = ipZ(K)^L(K) = ôrs.

Substituting these developments into the expressions of the con­
stants of collision we get

) + ( 1/2) (j’kl’k + Vkl)k) >
K,r k

* (H>2)
0 = +

K,r

and a similar expression for the angular momentum. Substitution 
of the developments (11,1 ) and (11,2) into the relations (4,8) gives

where HKr — (1k(IK’ — brKb¿ an(* Hk — (1/2) (C^’fe + :
every other commutator of a quantity a, b or n with an H vanishes.

The incoming fields can be developed in the same wav as the 
outgoing fields. The coefficients in the Fourier series will be 
operators a111, bm and pin which not only satisfy commutation 
relations similar to (11,3), but also the following ones which re­
sidí from (4,4)
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M’r, «2n’r]+ = b ré,r> ^Kn’r]+ = b [<4n, = 1 ; (H,4)

all other commutators (or anticommutators if two operators a or 
b are involved) vanish.

The field equations give expressions of the outgoing operators 
as power series of the coupling constants. Each term of these 
series is a polynomial of lhe incoming operators. Thus the out­
going operators are continuous functions of the coupling constants, 
and have the incoming operators as limit if lhe coupling vanishes.

The problem now is to show that, as a consequence of (11,3), 
the outgoing operators satisfy commutation relations identical 
with (11,4).

Wigneiv19) has given the general form of the operators 
satisfying the relations

[p, H] — u, [v*, H] = — it*, H = (1/2) + zw*). (II,5)

His method can be applied with very little change (although the 
result is very different) to the case of operators satisfying the 
relations

[a, H] = ct, [u:i:, H] = —a*, H = ct*a. (H,b)

One finds in this case an infinite number of irreducible represen­
tations with 0, 1, 2, 3, • • • or oo dimensions. Only in the case of 
a two-dimensional representation do the operators satisfy the re­
lations

[a, (i] + — 0, [a:i:, a*]+ = 0, [a, a*] + = 1. (II,7)

However, as there is only a discrete set of possibilities, and as 
the outgoing operators go continuously over to the incoming 
operators as the coupling goes to zero, it follows that the outgoing 
operators satisfy the relations (11,7). The same applies to any 
operator a or b.

Next, we take two operators and a2. They satisfy besides 
the relations (11,7) the relations

4*

[«r = [a*> n2\ = [a2, Ht] = = 0. (11,8)

It is easily seen that these relations have as consequences the
relations

* * * * * * * * * * z T r rt \ala2 = ca2a} , «t«2 — c ct2ar, — c ’ V'2 = ca2ar, (11,9)
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where c is any number such that |c 2 = 1 . The relations (11,9) 
are not symmetrical in ar and cz2. In order to make it more ob­
vious we can write, for instance,

^1^2 ~~ ^12^2^1 > ^2^1 == ^*21^1^2 •

We have then c91 = c10. The operators cq and a appear in fact 
as Fourier coefficients of two plane waves with propagation vec­
tors K' and K> and spin orientations rx and r2, and c must then 
be an invariant function of these quantities. As all invariant 
functions of two propagation vectors and two spin orientations 
are symmetrical we must have c12 = c21. It follows that c = + 1 
or 1 , and by continuity we see that c = 1 . The same applies
to any couple of operators a or b. Thus, we have shown that the 
fields 4 0111 and yout satisfy the same commutation relations as the 
incoming fields.

The case of the operators v can be treated by very similar 
considerations. A slight complication comes from the fact shown 
by Wigner that the representations of the operators satisfying 
the relations (11,5) depend on a continuous parameter which 
fixes in particular the zero-point energy. So the continuity argu­
ment does not apply here. It is, however, easily seen that the 
zero—point energy must be the same for the outgoing fields as for 
the incoming fields as a consequence of the conservation equation

G4 (out) = G4(in).

Fhe proof is then easily completed.

Appendix III.
On the solution of the field equations.

1. Localized interaction.
We assume that the formulas (5,6) hold up to the order n — 1 . 

The terms of order n can then be computed from the field equa­
tions (4,3). For y1, f°r instance, one finds

y/n)(.r0) = d.v1S_(.v„ — .r, ) (gA (xq) J A/y>(n“1)(.r1)¡, (111,1) 
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where
.40,) =n¿1II(',)(.v1)v("-''-1’(.Vi).

P“"

Explicitly A(.Tj) reads

A(.Ti) = ¿y Çdæ'd.r' • • • dxpdx” dx'¿ • • • d.r\_p_i

P = 0 la’j > x' > x' > ■ • • > x),
X, >X'' > x" > • • • > Xn-j.-l

[...[uin(x1), H'J, • • ■ H'p] (æx)> H''], ...

If we cali t2 , Tg, • • • xn the points t'l , • • • xp, x", ■ ■ ■ x,r^_p_i 
chronologically reordered, we can write for A(ti)

A (a-i) = ( dx2 • • • dxn V [ • • • [f/in (æi)’ Hil] ’ ‘ • Hip]
• X, > X, > • ■ • > xl(

[■ [vin(æo. Hlp+i].---HK _,]

where the summation is extended to all permutations jA, j>, 
• • • À—i of 2, 3, • • • h such that j\< j2< ■ • • < Jp and Jp + 1 < 

Jp + 2< • • • < Jn—i- Il n,)W easily seen that

--l(-i’i) = \dx2dx3 ■ ■ • dxn[ - ■ ■ [um (x^, Hn]. (U 1.2)
• Xj > X2 > • • • > X(|

After substitution in (111,1) of (111,2) and of the expression of 
^(n—1), we get

ÔLÏ1
(.Tj) ’

( dxrdx2 • • • dxn[- ■ ■ [y’in (.ro), Hi], H2], ■■■ Hn]
* x, > x2 > • • • >X/t

where use has been made of the relation

ô I *n
/S+ (t0 —Ti) ¿ + ) = LV’,n(^’o), Hi] if .r0>Ti, I

= 0 if To < Tx. I
A similar treatment applies to the other field functions. Thus, 
(5,6) holds to all orders.

As for the outgoing fields, the term of order n of ip, for in­
stance, is given by
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V°ut<n,(x) = i//x1.S(x--x1){!M(x-1) Z1J/Ÿ>,'-,)(X1)},

and on using (111,2) and the relation

d I i11 
/S(.r —.rx) 1 . = [v’in(.v), Hx],

(.Ti)
we gel

= C/.rß/x,, ■ ■ • </x-„[- ■ ■ [v"‘(.r). //„].
•-Xj > x2 > • • ■ >xn

2. Non-localized interaction.
Ehe preceding proof can be extended immediately to the case 

of a non-localized interaction. The only delicate point is the trans­
formation of the expression called .4 (.14). Presently, we have to 
show the identity

VL/r ... . [«"■ (x-;'), h'j, • ■ ■ w;,j V/i'/ ■ • ■
p= 0 «7 »7

tv"1 (•>■;,")• «;'],•••«;' .„_ii =

Úí, <«„[••• [Ui"(x")v’i,,«')> w,], H„j.
•7

(I H,3

In the left-hand side the variables on the one hand, and the var­
iables on the other hand, are ordered in time independently. 
We have to develop both sides of (111,3) and to compare the re­
sults. The integrand in the right-hand side can first be expanded as

(111,4

where the summation is extended to all permutations of 1, 2, 
3, • ■ • n such that j[ <./' < • • • <j'p, and.// </'' < • • • <jä-.p-1. 
Then, the term in uin and the term in have to be developed. 
Thus a term T of (111,4) is the product of a term Tu coming from 
the first factor, and a term Ty, coming from the second factor. 
The term Tu w ill also appear in the development of the first factor 

in the left-hand side of (111,3), and Ty, will appear in the develop­
ment of the second factor. The associated domains are clearly 
the same in both sides. Finally, the rule that each term T should 
be multiplied by \/N(T) is conveniently replaced here by the 
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rule that only one term in each family of equivalent terms should 
be taken into account. It follows that each term appears the same 
number of times in both sides of (111,3), and this completes the 
proof.

The formulas for the outgoing fields and the products of out­
going fields are merely generalizations of (III,3).
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Errata.
P. 29, line 13, instead of x' read x'".
P. 29, line 15, instead of x'" read x'.
P. 32, eq. (5,13), left side, instead of (x0) read (x0"').
P. 32, eq. (5,14), right side, instead of (x/z) read (x'").

Dan. Mat. Fys. Medd. 27, no. 8.



Det Kongelige Danske Videnskabernes Selskab
Matematisk-fysiske Meddelelser, bind 27, nr. 9

Dan. Mat. Fys. Medd. 27, no. 9 (1953)

ON THE RELATION BETWEEN
PHASE SHIFT ENERGY 

LEVELS AND THE POTENTIAL

BY

BES JOST and WALTER KOHN

København
i kommission hos Ejnar Munksgaard

1953



Printed in Denmark 
Bianco Lunos Bogtrykkeri



A method recently developed by Gel’fand and Levitan is adapted to the 
problem of determining a central potential from the “spectral function” 

corresponding to a given angular momentum. (The spectral function incorporates 
the phase shift, binding energies and m additional free parameters if there are m 
bound states). Two applications are given : An explicit expression is deduced for 
the totality of potentials with the same phase shift and binding energies as a 
given potential. Further it is shown that for a given phase shift the position of 
the bound states is entirely arbitrary and an explicit example is given which 
illustrates this fact. Implications for the interpretation of scattering data are 
discussed.

Introduction.
It was shown in a previous paper [1] that a short range 

central potential is uniquely determined by the phase shift and 
binding energies for any given angular momentum plus as many 
additional parameters Cf as there are bound states. For boundary 
conditions h cp (0) + <p' (0) = 0 Gel’fand and Levitan have in 
a beautiful paper [2] combined phase shift binding energies and 
the Cfs into one so-called spectral function q (E) and reduced 
the problem of determining h and the potential to the solution 
of a linear integral equation. Their method can easily be adopted 
to the physically interesting case tp (0) = 0, which will be done 
in § 1. The resulting integral equation thus provides a method 
for constructing the totality of potentials corresponding to given 
phase shift and binding energies.

In § 2 we first exhibit the dependence of these potentials on 
the parameters C¿. We have solved this problem in a previous 
paper [3] by elementary means. The present method yields in 
a simple way the same results in an improved form.

It is a consequence of the theory of Gel’fand and Levitan 
that the positions of the bound states are independent of the 
phase shift. This is proved and illustrated by an example in the 
second part of § 2.

In § 3 we discuss the implications of these results for the 
interpretation of scattering experiments.

1 *
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§ 1. Derivation of the Integral Equation.

We consider potentials for which \ r | V(r) | cZr < oo and 
\ r21 V(r) I rfr < oo . The Schroedinger equation for S-states is 
• o

y/'(E, r) + E (E, r) = I>(E, r). (1.1)

We will make use of the following solutions of this equation:

<p (E, r) : cp (E, 0) = 0; ç/(E, 0) = 1 (1.2)
and

f(k, r) : lim eikrf(k, r) = 1, (1.3)r->oo
where

F = E. (1.4)

(p (E, r) is for a fixed r an entire function of E, whereas f(k, r) 
is regular for An (£) < 0 and continuous for Im (k) 
For large | k |

(p(k2, r) ’ C1-5)

and for large | k | in Im (7c) < 0

/■(Å',r)-e-iÅT. (1.6)

The function f (k) = f(k, 0) determines and is determined by 
the phase shift and the binding energies, which latter are given by

Ez = —xf; /■(—/ xz) = 0, xz>0. (1.7)
For real k

<p(k*,r) = 4røf(-i,r)-f(-i)((i,r)]. (1.8)

Further we introduce the spectral function o (E) defined by

Q (— ao ) _ 0

do 
clE ^C^E-Ej), E<0

dg 1 J/E
Je _ I2’

E 7> 0

(1.9)

where
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cz Ç fø(E/5r)]2 di­
vo

2 zx^f (ixt, 0) 
f(—*>z>

f (— *\) —

(1.10)

The spectral function has the property that we have for every 
square integrable function F (r) the completeness relation

JÎF(r)]2dr= dg (E) \ dr F (r) <p (E, r) drj . (1.11)

We now consider two potentials Vj (r) and V (r) and the cor­
responding solutions çq, /\ and (p, f. In analogy with Gei.’fand 
and Levitan we shall establish the equation

(1.12)
where

(1.13)

For

(1-1-1)io

We

(1.15)

and

(1.16)

-0
•r

A’ (r, t) = — jj d [p (E)~q1 (E)] <p (E, r) (E, t).

this purpose we first consider the integral

I = E - A

QC

1 C k'dk
71 Í

— 00

7 (E, r) = <pt (E, F) + ( dt K (r, t) cp1 (E, t),
•'o

substitute in the first term
f (— i X,, r)

<p(Elfr) = . 1
f

in the second term we use Eq. (1.8):

Z /■(—zxz,r)í*dÍ99i(—xf, 0
ro

r." r f *r
i \ rTZT) /■<“ A'- r> \ <" fi (A'2. 0 <Pi (JE, t) ■

Z = j dø (E') <p (E'> r) ^dt (E1, /) (E, /)

- Cz (p (Eh r) ( dt (p± (Elt t) (pi (E, t) 
vo

rtr
1 i k'2 dk' I+ i \ /•(*-) '■> V" 1°‘ (k"1’ 1>^E’ >)■

-oo o
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The second term can be transformed into an integral over a 
large semicircle in the upper half plane and a sum of residues 
which cancel the first term. The remaining integral can be eva­
luated by using the asymptotic expressions (1.5) and (1.6) 
(compare ref. 1 Eqs. (A 2.26) — (A 2.30)) giving the final result

19?! (E, r) = \ cIq ( E') 99 (E', r) \ dt (pr(E', t) <pi(E, t). (1.17)

Next, consider the integral

J = <P (f>i(E', [^(E, t). (1.18)

Using the Schroedinger equation wc can write

U?, (£',()?>,(£,/)
•'0

= E ^<Pl ^E’ ~(P1 ^E'’ (p'v ^E’'
(1.19)

Substituting dQi(E') from Eq. (1.9) and eliminating 9^ (E', r) by
(1.8) and (1.15), respectively, gives, for E not on the positive
real axis,

y
I

J =

X [ft (— **1 />r) <Pi rï — fi (- z> r) 9Á (E>7’)]

1 i k'dk'
A(”Á?)

— oc

k'^-E r)7?1 (E’ r)

(_k',E><p\(E,r)].

(1.20)

Shifting the path of integration in the second term into the 
upper half plane gives residues cancelling the first term plus 
an integral over a large semicircle and a residue at k' = J E. 
The integral over the semicircle can be evaluated by using the 
asymptotic expression (1.5) and (1.6). The final result is

9? (E, E) —K 9h (E> r)

= ( de¡ (E') <p (E', r) VdtK (E', t) (E, I). 
’ ' 0 

(1.21 )
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Combining (1-17) and (1.21) and interchanging the order of 
integration leads to (1.12), (1.13). The same result can be simil­
arly derived when E is on the positive real axis.

From (1.13) one can deduce the following properties of the 
function K (r, f) :

K (r, 0) = 0.
(1-22)

Furthermore substituting (1.12) into the Schroedinger equation 
and using (1.22) leads to

—^ = |[V(r)-V1(r)]. [4]. (1.23)

The equations (1.22) and (1.23) characterize K (r, t) uniquely 
in terms of V (r) and V) (r).

On the other hand, multiplying (1.12) with çq (B, s) and 
integrating with the weight Q (E)— Qi (E) gives the Gel’fand- 
Levitan integral equation

K (r, .$•) + g (r, s) + Ç dtK (r, t) g (s, t) = 0 (1-24)
*0

whose kernel is
g(s, 0 = jj d[o (E)—q1 (B)j (pr (E, s) çq (B, t). (1.25)

The construction of a potential can now be carried out in the 
following steps: Phase shift and bound states determine the 
function f(k) (ref. 1, Eqs. (2.16)—(2.18)). | /'(7c) |2 and the 
constants Cz determine by (1.9) the spectral function q(E). 
Deriving Qi(E) and çq (B, r) from any convenient comparison 
potential one can now construct g (s, t) by (1.25). One must 
then solve the linear integral equation (1.24) for all values of 
the parameter r 0 to obtain K (r, s).

Finally the potential is calculated from (1.23).

In order that the integral equation can be solved it is necessary 
that the corresponding homogeneous equation has no solution. To show 
this we write down the homogeneous equation, using (1.25):

+ = 0. (1.26)co
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Multiplying by / (s) and integrating over s from 0 to r leads to

(1-27)

Applying the completeness relation (1.11) to the function

F (3) = Z (3)
F (s) = 0

0 $7 s <7 r
s > r

(1.28)

reduces (1.27) to
#00 12

dscpl (k2, s) F (s) = 0.
o

(1.29)

Therefore F (s) is orthogonal to all the continuum eigenfunctions of the 
potential Vx (r) and hence a superposition of the discrete eigenfunc­
tions. Consequently it cannot vanish for s > r in contradiction with 
(1.28). [5].

The fact that the integral equation (1.24) has a solution is not suf­
ficient to insure the existence of the potential Eq. (1.23). It may not 
be out of place to indicate here how conditions sufficient for the 
construction of the potential from the spectral function can be ob­
tained.

The only difficulty in justifying the construction occurs in Eq.
(1.22) involving second derivatives of K (r, I). It can be dealt with by 
using a limiting process. We introduce an auxiliary function (F), 
M > 0, defined by

o^(F) = o(F), F<M, I
do-11 (F) doi(F) (1.30)

dE dE

Assuming e. g. a comparison potential Vx (r) continuous forr>0 we 
have no difficulties with the second derivatives of the function

(s, /) = T d (F) - Ql (F) ] (F, s) (F, 0 (1.31)
J
— 00

which satisfies the differential equation
d2gM -r.ws" = ^--vao»3'. (1-32)
ds2 dt2

The function KM(r,t) constructed by (1.24) using the (s,/) is 
twice differentiable.

It is easy to verify that the expression
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ZïV (r, t)
dfjr, 0_ JrfA-V(r,r)\

dr2 \ dr ) KM (r, Z)

V d2K (r,t) V- V, (r) KM (r, t)--------+ V1 (Z) KM (r, t)

satisfies the homogeneous integral equation

(r, s) + \ %M (r, Z) gM (s, i) dt — 0 
•'o

(1.33)

(1.34)

and therefore vanishes identically, so that we have established the
equations

d2KM (r, 0 _ 9 /dK™ (G/)\ 
dr2 \ dr /

KM (r, Z) — V\ (r) KM (r, t)

d2 (r, t) 
dt2

(1-35)

KM (r, 0) = 0.

It is a consequence of (1.35) that the function

(E, r) = <P1 (E, r) + VK™ (r, Z) (E, t) dt
• o

satisfies a Schroedinger equation with the potential

VM(r) = Vi(r) + 2
dK']I(r, r) 
~dr~

or, what amounts to the same, the integral equation

(1.36)

(1.37)

C dK (t,t) „^(F,r) = ^ (£, r) + 2 \ G (E, r, Z)-----^^(£,Z)dZ, (1.38)
e0 at

where G (E, r, Z) is the appropriate Green’s function.
We now assume that dgM (s, t)/dt is uniformly bounded for all M 

and in every closed region of the (s, Z) plane and that, furthermore,
dgM (s, Z)lim---- -----  = Q(s,t) (1.39)Af->x dt

exists. Then -Q (s, Z) is integrable and

/ ? V
\ Q (s, r]) dr¡ = lim ^s,r^ dg — lim (s, Z) = g(s, f) (1-40) 
*^0 3/->x«q dg 3/->x

exists also, and we have

(1.41)
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The existence of
7i (r, i) = lim 7v'V (r, /) (1-42)

.1Z >X

which is now a solution of (1.24) is a consequence of simple theorems 
on integral equations. From the explicit solution of (1.24) follows the 
existence of

d/< (r, r) d7FV(r, r)------ = Inn — (1-43) 
dr .vhkx rfr

and its integrability. Obviously

lim <pM (E, r) = <p (E, r) = (E, r) + \ K (r, t) <pi (E I) dt (1.44)
jr->æ »o 

exists and satisfies
(*r dK (t, t)<p(E,r) = ^(B,r) + 2^G(B,r,Z) 'y^E^dt. (1.45)

This concludes the verification.
The following conditions on the difference (E) — (E) and on

(r) are sufficient to insure the above conditions and hence the ap­
plicability of the construction procedure. They cover most of the phy­
sically interesting cases:

( rK I Vj (r) I dr + ( r | Vj (r) | dr < x , 0 < « < 1 
♦’o • !

d | E-[«(EJ-oJE)] = »— 
dE n

r
E

F{E)
Tji + e

where

and r is constant.

E>E0>0, £>0,

F (£) | < y <

(1-46)

(1-47)

(1-48)

The extension of the foregoing considerations to higher angular 
momenta, I > 0, is straightforward. We define the solution 
f (k, r) as before by

lmeikrf(k,r)=l (1.49)
r->x

and call
/■(Å-) = (2 Z+ 1) limrY(k, r). (1.50)

r-> 0

Further we define the solution (p (E, r) by

lim ç? (B, r)/rz + 1 — 1.
r -> 0

(1.51)

Then, for real k,
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9?(7c2, r) = [fCÁ-)/■(—/<, r) — /'(—Ä-)/'(A-,r)] (1-52)

while, in the bound states, k = —ixm,

= lim /+r - C1-53)
í->0 L *

Appendix II of ref. 1 can now be worked through for /> 0 
(dropping, however, the distinction between cp and ç?) and gives 
for dojdE (cf. Eq. (1.11) and ref. 1, Eq. (A 2.37))

where

(1.54)

Cm = i k (-OP * = Jim O/r' + 'J. (1.55)
•’o /V

With these new definitions one arrives again at the basic equations
(1.23),  (1.24) and (1.25). [6].

§ 2. Two Applications of the Integral Equation.
(a) Equivalent Potentials.

We first want to exhibit the dependence of the manifold of 
equivalent potentials (i. e. potentials with the same S-phase shift 
and bound states) on the parameters Cz. We choose for Vx (r) 
an arbitrary potential out of this manifold corresponding to the 
values Cll. Since equivalent potentials have the same f(k), we
get

d[Q(E^Q1(E)]
dE E > 0 (2.1)

and
rf[e(g)-a(£)]

dE
m
^[C-Ctl}»(.E-E¡), E<0. (2.2)
/= 1

The kernel (1.25) then reduces to a finite bilinear series



12 Nr. 9
in

(J (s, t) = (6'7 — Cu) (fu (s) y u (t ). (‘2.3)
i = i

where we have used the abbreviation

VnC1’) = Vi (Kh r) (2.4)

for the bound state wave functions. To solve the integral equation
(1.24) we make the Ansatz

m
K (r, s) = y dj(r) Vu(s). (2.5)

i -1

The <//(/’) are then determined by the linear equations
m

^ki (r) ai O') — (Ck— Clk) (fik(r), I 1 (2-6)

where
^AtzO) — ^kl (ßk /<) \* (0 9^1 Z (0

• 0
(2.7)

As we have seen at the end of § 1, the matrix has an
so that

inverse.

and

m 1

fl/(r) = 5 4////(r)(q.-C1/;)çP17.(r)
k = 1

(2.8)

K (r, s) = y_ (s) M~1 (r ) (Ck — Cx k) <pl k (r )

V(r) = Vx(r) — 2^2 log Det || Jf^(r)||.
(2.9)

Examples of equivalent potentials have been given in ref. 3.

(b) Independence of Binding Energies from the Phase Shift.
The independence of the binding energies from the phase 

shift is a simple consequence of the Gel’fand-Levitan theory. 
We consider the S-phase shift as given and assume that there 
exists a potential (r) reproducing this phase shift and having 
a bound state at the position k = — i zx. We now make the 
assumption that Ex (r) satisfies Eq. (1.46) from which it follows 
easily that
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1

13

IA (O I2
F ( F) I < Ar< oc . (2.10)

(2.10) is satisfied in all physically interesting cases.
Next we construct the f(F) corresponding to the same phase, 

but the bound state at a different position, Á- = —zx:

so that
f(k) = f^F) F2 + x2 

k2 + X“ (2.11)

/e[q (£)-ßi(E)] = CôCE + ^-CrôCEF^),

E<0;
(IføCE) —^(E)] =
dE

]/E 1 (2E+x2 + x2) H-x2)
Ia(/e)|2 (e + x2)2

E>0.
Evidently the conditions (1.46) and (148) are satisfied so that a 
potential corresponding to the same phase shift, arbitrary po­
sition of the bound state and arbitrary constant C can be con­
structed.

For the case when the position of a bound state is changed from 
— zxj to — ix the g (s, /) can be explicitly calculated.

By (1.25) and (2.12) we have 

9(s,0 = C9>1(-x2,s)y1(-x2,0-C1?>1(-x2,S)9?1(-x2,0 + ÿ(c)(s,05 (2.13)

where the contribution gd) (s, t) from the continuum is

0(c) (s, 0 (2.14)

By (1.8) and use of contour integration this becomes, for s ¡> k

(2.15)
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For s < t, g (s, /) can be determined from the symmetry relation 
17 (s, Z) = g (/, s).

It is interesting to calculate the derivative of the potential with 
respect to the variation of one of the binding energies. From (1.23) 
and (1.24) we have

d„ V(r;x)ox
d r d2
dr dx K (r, r ; x)

X = Xj

ami by (2.15)

, g(r,r;x) dx

4- g tr’r ’
dx

“1
/\ (—^l)/¡ (—zxx,0)

0
; [/(—zx, r)]2

(2.16)

(2.17)

Thus [ô V (r; x)/dx]x_x , has the form

(2.18)

This expression can be checked in an elementary way. We consider 
the infinitesimal change of potential

ÔV(r) = ôx d V (r ; x)'
dx Xj

(2.19)

and shall verify that to first order in ôx it changes only the binding 
energy —x2, to —(x¡ 4- ôx)2, leaving the other binding energies and 
phase shift unaltered.

We have seen in ref. 3, Eq. (2,3), that the first term of (2.18) does 
not change the eigenvalues or phase shift; it merely leads one to a 
neighbouring “equivalent” potential. Next we calculate the change of 
the eigenvalues due to the second term in (2.18). Let y7 be the normalized 
eigenfunction of Vx, belonging to binding energy E). Then

(2.20)
zx, r) V72(r)dr.

x = xx
8 zxj i,Xr

poc
0EZ = Uv(r)[V7(r)]2dr

• 0

~ 0X/i zx^O)^^
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With the help of the Schroedinger equation we find (cf. ref. 3, Eq. (2.3))
- oc

•W

gives,

(2.22)

shift,

(2.23)

4 k2 + 4 y2
/W = (2-24)

where

(2-25)

(2.26)

2 (2-27)

2
. (2.21)

Differentiating with respect 
with the help of (1.10) and

(2Á’-2zx1)2

This potential has no bound state and is uniquely defined. It is 
contained among the examples of Bargmann [1]. Since

to x and substituting into (2.20) 
(1.15),

Similarly one can check that ô V (r) does not alter the phase 
which completes the verification.

energy 
to Eq.

As auxiliary potential Vi(r) we chose the potential corresponding 
to

8 zzj

As an illustration, we shall explicitly construct the potentials 
corresponding to the phase shift r¡ (k) given by

k cot rj (k) = — a + ~ r0k2

neutron proton scattering in the triplet state.
(6.19) of ref. 1 this leads to

-5
!, 0) 2

_ 0°

I

2
Q = ~

r0

and a bound state located at the arbitrary negative energy = y% 
Eq. (2.23) has been used for an approximate description of low 

According

/;(-ix,o) 1
—---- ,7— y’l dr

C 2

cr = — |/1 —-2a r0 
ro



16 Nr. 9

the kernel g (s, t) of Eq. (1.25) reduces to a single bilinear term 
so that the solution of the integral equation (1.24) becomes 
trivial and V (r) can be determined.

To obtain an expression for (r) we express zx by means 
of a new parameter x as

xi = 9 (ø + CT) I — 1 <A< 1. [8]. (2.28)

Then Vx (r) can be written as

Vx(r) = 2pu((p + Zu)2(u + xp)2(p-u)2[e^ + CT)r_22e-^ + c)n2 

- A2 (q + a)2 [(p + Aa)2 ¿ r - (a + W e~ ’’ r]2}

X {(p + Xu)2 [(oef->r + px2e-°rr] - (a + Xp)2 [oear + ax2

(2.29)

and the corresponding (fi (Elt r) is

?i(£i.r) = ^'(l-A2)

(p + Âcr) [ae-r + pZe—ar] —■ (a + xp) [peCTr + Xue-”r]

(p + Zu)2 ’ue-r + pÂ2e~CTrj — (a + Zp)2 ipe(7r + Å2ae~^r]

(2.30)

The integral equation for K (r, /) is

K (r, s) + C 9T (Ex, r) (Ex, s)

+ C 9T (Ex, s) K (r, I) (p1 (Ex, t) dt = 0 
•'o

with the solution

A'(r, 0 = Cp, (£„/■) ?,(£,.<) _ 0< C<M 
1 + C \ [<pi (L’i, t')]2 dt'

•' 0

(2.31)

(2.32)

The family of potentials with the phase shift (2.10) and the bound 
state at the arbitrary energy Ex < 0 is therefore given by

V(r) = Vx(r)-2C^ [yi (Ki, Q]2
1 + cf[y1 (Bf i)]2df

•'o

(2.33)

Summarizing we may note that we have here a four para­
meter manifold of potentials; p and u are determined by the 
phase shift, x by the position of the bound state and C by the 
normalization of the bound state function <p (Ex, r).



Nr. 9 17

§ 3. Remarks on the Interpretation of Scattering Data.
In some of the early investigations of the S-matrix, it was 

believed that the zeros of the S-matrix determine the bound 
states. Counter-examples showed, however, that in some cases, 
at the so-called false zeros, no bound states occur. Still, the idea 
survived that at least the S-matrix must always vanish at the 
points of the discrete spectrum. For instance, this idea was 
used in one of the justifications of the so-called effective range 
theory [9], to establish the connection between the neutron proton 
triplet S-phase and the binding energy of the deuteron. We have 
seen that such a connection does not exist, in general. We shall 
show that only for sufficiently short-range potentials do bound 
states necessarily coincide with the zeros of the S-matrix. (It 
should be noted that the original derivation of the effective range 
formalism by Schwinger [10] does not make use of this connection, 
bid is based only on the assumption that the range of the potential 
is short compared to the size of the deuteron).

Thus consider the case where the S-matrix, S(Á) = e2lî?(*), 
is known and has zeros at k = —ixh I = 1, 2, m. Suppose 
further we know a priori that the underlying potential is short 
range in the sense that

lime2xr V(r) = 0 (3.1)
r->oo

for some x > 0. Then f (k) is regular in Im (k) < x so that in the 
strip, —- X < Im (k) < 0, there is a one to one correspondence 
between zeros of the S-matrix and binding energies. On the other 
hand, no bound states need occur at those zeros — i xz which lie 
below this strip. For suppose there exists a potential Vx repro­
ducing the phase shift and having bound states at —z’xz. Accord­
ing to (2.19) and (2.18) one can add an infinitesimal increment 
dV = £ [(d/dx) (/] (— i X, r) /' (— zx, r))]x = X/, which changes only 
the position of the /’th bound state. Since it behaves asymp­
totically like E (2 xzr— 1) exp (—2 xzr) it does not violate 
(3.1), provided that xz > x, and hence leads to an acceptable 
potential with the same S-matrix, but a displaced bound state.

For the neutron proton system x, Eq. (3.1) may be estimated 
by meson theory and is substantially larger than the smallest 

Dan.Mat.Fys.Medd. 27, no.9. 2 
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zero, —i zx, of the S-matrix (x/xx 1-5). From this additional 
information it follows that this zero corresponds to the deuteron 
binding energy.

It is a great pleasure to express our thanks to Professor Niels 
Bohr for the opportunity to carry out this work at his institute 
and to the Rask Ørsted Foundation for financial support.

Institute for Theoretical Physics, University of Copenhagen, Denmark.



Nr. 9 19

References & Footnotes.

[3]

[4]

[5]

[6]

R. Jost and W. Kohn, Phys. Rev. 87, 977 (1952).
I. M. Gel’fand and B. M. Levitan, Doklady Akad. Nauk. S.S.S.R. 

n Ser. 77, 557 (1951); we are indebted to Professor Lars Gâr- 
ding for bringing this paper to our attention.

R. Jost and W. Kohn, Phys. Rev. 88, 382 (1952); See also B. Holm­
berg, Nuovo Cimento 9, 597 (1952).

The derivation of (1.23) by means of (1.22) is not mathematically 
strict, because of the occurrence of second derivatives in (1.22). 
Conditions for the validity of (1.23) will be given on page 8 if. 

One can verify the completeness of the functions <p (E, r) defined 
by (1.12) with the aid of (1.11), (1.12), and (1.13).

The connection of / (/c) and r/ (k), in the absence of bound states, 
is given by

/(A’) =
1-1-3---(2Z+1)

Wl
exp

with obvious modifications when bound states are present ([1], 
Eqs. (2.15)-(2.18)).

[7] V. Bargmann, Rev. Mod. Phys. 21, 488 (1949), Eqs. (4.1)—(4.6).
[8] The connection between our parameter 2 and Bargmann’s a and ß

Í tf(ref. 5, Eq. (4.3)) is ß — 22, a — ——■—
^•cr

[9] J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).
[10] J. Schwinger, Unpublished lectures at Harvard University (1947).

Note added in proof.
After completion of this manuscript the existence of a more de­

tailed paper by 1. M. Gel’fand and B. M. Levitan (Isvestiia Akad. 
Nauk. S.S.S.R. 15, 309, 1951) was brought to our attention. This 
paper contains all the proofs and treats, also the case of boundary con­
ditions (p (0) = 0. No application to scattering theory is discussed.

Indleveret til selskabet den 27. september 1952. 
Færtlig fra trykkeriet den 12. marts 1953.
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§ 1. According to the general theory of relativity, the time­
behaviour of homogeneous isotropic Universe is described by 
the equation (1)

where G is the Newtonian constant, c the velocity of light, q the 
total mean density in space, and R the curvature radius1. If I is 
the distance between any two material points in the expanding 
Universe standing in a constant ratio a to the curvature radius, 
we can rewrite (1) as:

1 dl i/ShG a2c2
1 dt = \ r Q~ 12~'

1 R. C. Tolman. Relativity, Thermodynamics, and Cosmology. Clarendon 
Press. Oxford. 1934 p. 396. We have assumed the cosmological constant A to be 
zero since the cosmological term is not needed in the expanding model, and since, 
in fact, the new value of Hubble’s constant leads to the correct age of the universe 
without the help of cosmological terms.

As it is well known, this equation simply states the law of 
conservation of mechanical energy (kinetic plus potential) for 
the masses enclosed within a sphere of the radius I. Generally 
speaking, the total mean density q is composed of two terms: the 
density of matter @mat which is inversely proportional lo Z3, and 
the mass-density of thermal radiation given by aT*/c2. At the 
present state of the universe, the mass-density of thermal radiation 
is presumably negligibly small as compared with the density of 
matter which can be assumed to be of the order of magnitude 
of 10~ 30g/cm3.

Dividing (2) by / we get

1*
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1
(4)

The present value of — /Z is known as Hubble’s constant, and 
dt

is numerically equal to the inverse age of the universe. We have

1 17 !

= IO-17 sec.-13.5-IO9 years 1017sec.

Substituting this value, along with that for the present mean 
density, in the equation (3), we find that, for the present epoch, 
the first term under the radical is negligibly small as compared 
with the second term, indicating that / is now increasing linearly 
with time. For the curvature radius the equation (3) leads to an 
imaginary quantity: /?pres = zclO+]7 — z‘3-1027 cm = Z-3-109 
light-years, meaning, geometrically, that the space of our universe 
is hyperbolic (infinite), and ever-expanding. Physically our result 
means that, just as in the case of a space rocket which had 
escaped from the terrestrial field of gravity, the galaxies are now 
flying away from each other without being hindered by the forces 
of mutual gravitational attraction. For that free expansion period 
we can apparently write:

(5)

For earlier periods of time, when the deceleration by gravity 
could not be neglected, the equation (3) should be integrated 
analytically. The result of integration indicates, however, that, 
down to one hundredth of the present age, the deviations of 
calculated matter density from the simple expression (5) are less 
than by a factor of three. Since in future consideration we will 
not be interested in the behaviour of matter-universe for still 
earlier dates, and since the present value of density used in the 
derivation of (5) is not known anyway within a factor of three, 
we will not use this refinement in our calculations.

Since in an adiabatically expanding thermal radiation the 
energy density changes as the inverse fourth power of linear 
dimensions, in contrast to the inverse third power in the case of 
matter density, we should expect that, for sufficiently early stages 
of expansion, mass density of thermal radiation plays a more 
important role than the density of matter. In this case the equation 
(3) can be rewritten in the form
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1/8 n G a 4 1 dl 1 (IT
I' _3~ c’2 = I dt = ~ T dt ■ (6)

The last equality holds because in an adiabatically expanding 
thermal radiation the temperature varies inversely proportionally 
to linear dimensions. Equation (6) can be integrated as

_ J/ 3c2 1 = 1.5-1O10
I 32^6^ (7)

giving, for the mass density of radiation during the radiation 
period of the expansion,

4.4-105 , „
(?rad = t2 g/Cm • (8)

Density functions given by (5) and (8) are shown by two 
straight lines marked “matter late’’, and “radiation early’’ in the 
logarithmic plot of Fig. 1. We see that these two lines intersect 
at the point corresponding to

t = 2.2-IO15 sec 
o = 1 •10—25 g/cm3 
T = 320 °K.

(9)

Thus we may conclude that, during the first two hundredths 
of its history, the expansion of the universe was ruled by radiation, 
whereas during the remaining time the matter was of primary 
importance. During the radiation epoch, matter density was
changing as / 3 ~ 7’3 ~ / 2, so that we can write

2mat. early
S? 0 10 / 3

: f/.= Sfil1 • (10)

where the numerical value 
the line passes through the 
During the matter epoch, 

t~i, and we have

of the coefficient is adjusted so that 
intersection point obtained before, 
radiation density is changing as

2rad.late
2.5-1036 , ,

/4 g/cm3. (11)

These variations are shown by lines marked “matter early” 
and “radiation late” in Fig. 1. It is interesting to notice that (11) 
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leads to the radiation mass density 2-10 32 g/cm3, and the tem­
perature 7 K, for the present epoch.

§ 2. Some time ago1 it was indicated by the author that the 
assumption of the predominantly radiative, and predominantly

1 G. Gamow. Nature. Vol. 162, p. 680 (1948).

Fig. 1. Variation of matter—and radiation—densities in the expanding Universe.

material states of the universe can be very helpfid for the under­
standing of the formation of “protogalaxies” (i. e. the initial 
gaseous galaxies before their condensation into individual stars) 
from the originally uniform gaseous material which presumably 
existed during the very early stages of the evolution. In fact, as 
long as thermal radiation was the predominant factor in the
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universe, the particles of matter submerged into it must have been 
constantly kicked around by light quanta, and should have 
maintained a uniform distribution through the space. As soon, 
however, as material density became the main factor, Newtonian 
forces between the elements of gas must have caused a break-up 
of the formerly uniform distribution into the individual gas clouds 
(protogalaxies) the size of which was determined by the well 
known .Jeans’ formula for gravitational instability. The present 
mean density of individual galaxies, being of the order of magni­
tude 10-24 or 10~25g/cm3, suggests indeed that the separation 
process must have taken place near the intersection or radiation­
and matter-curves in Fig. 1. Substituting the density and tem­
perature values from (9) into the Jeans’ formula

I)min
5 TtX T

3
(12)

for the minimum diameter of gravitational condensation1, we 
obtain

1 The value for the mean molecular weight n may range from 2.7 for a half 
and half (by mass) mixture of molecular hydrogen and atomic helium, to 0.7 
for the same mixture in completely ionised state. Evaluating (12) we have assumed

= 1.
2 Holmberg. Lund. Medd. Ser. II. No. 128 (1950). The curve shown in 

Eig. 2 is redrawn from Holmberg’s original luminosity curve under the assump­
tion that the luminosities of different galaxies are proportional to their masses.

3 S. Chandrasekhar. Proc. Roy. Soc. A. Vol. 210, p. 26 (1951).

Dmill = 5-1021 3 cm = 5 001) light-years. (13)

For the minimum mass of the condensation we obtain

J/min = 1040g = 5-IO6 sun masses. (14)

We can now compare this theoretical lower limit with Holm­
berg’s data2 concerning mass distribution among the galaxies, 
shown in Fig. 2. We see that the theoretical minimum mass-value, 
being certainly of galactic order of magnitude, falls short by a 
factor of ten from the observed lower limit of galactic masses. 
This may be due, of course, to the approximate nature of the 
theory, but may also be a real effect caused by not taking into 
account the possibility of turbulent motion in the primordial gas. 
In fact, according to recent calculations of S. Chandrasekhar3, 



8 Nr. 10

Jeans’ expression for minimum radius of gravitational conden­
sation in turbulent medium must be multiplied by a factor

(1+-’-l/2)'", (15)

where M is the mean Mach number of turbulence. Thus, the 
assumption of Mach number 4 would bring the calculated lower 
limit of galactic masses to its observed value.

Apart from reasonable numerical agreement between the 
observed minimum value of galactic masses, and the value 
given by Jeans’ formula, we want to stress the point that the 
shape itself of Holmberg’s curve, with its steep descent on the 
side of lower masses, and a long tail extending into the region of 
exceptionally massive systems (such as our Milky way, and 
Andromeda), strongly supports the point of view that the for­
mation of protogalaxies proceeded under the conditions charac­
terised by the existence of a certain lower threshold for their mass.

§ 3. We have mentioned above the possible role of turbulence 
in determining the sizes and masses of gravitational condensations 
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in the expanding primordial gas. As it was first suggested by 
Weizsäcker1, the assumption of turbulent motion in the prim­
ordial gas might be also absolutely necessary for the correct 
description of the condensation process itself. In fact, as it is in 
the case of many instability problems, Jeans’ gravitational con­
densations will develop within a finite time only if there are 
present some rudimentary local compressions and expansions 
which can be further augmented by the action of gravity forces. 
It seems in fact that, unless we have extensive density fluctuations 
by a factor of two or three in the primordial gas, no gravitational 
condensations could develop within the time period permitted by 
the age of the universe. It is clear that no such fluctuations could 
be expected in the original gas on the basis of the simple statistical 
theory. On the other hand, since the Raynold’s number may 
become arbitrarily large in an infinite gas medium, we may 
expect the formation of large size turbulent eddies. Since, in this 
case, the velocity of turbulent streamings could well have been 
larger than the velocity of thermal motion (as it is the case for 
interstellar gas in our Galaxy), one could easily expect the for­
mation of local compressions and rarefactions of all possible 
sizes. And the compression eddies exceeding the minimum mass 
given by Jeans’ formula must have been prevented from subse­
quent expansion by the Newtonian forces between their parts. 
According to this point of view, Holmberg’s distribution of 
galactic masses may reflect the state of turbulent motion in the 
primordial gas, and it would be interesting to see whether this 
distribution is indeed in accordance with Kolmogoroff’s spectral 
law for isotropic homogeneous turbulence.

Much larger, and correspondingly much weaker, compression 
and rarefaction eddies would have no time to change considerably 
since the separation time, as would be noticeable at present only 
as certain inhomogeneities in the space distribution of individual 
galaxies. Such deviations from the uniform distribution of galaxies 
through the space of the universe were actually observed and 
studied by H. Shapley2, and 0. 1). Shane3. In Fig. 3 we give, as 
an example, one of Shane’s diagrams showing the isolines for

1 C. von Weizsäcker. Astrophys J.Vol. 14, p. 165 (1951) and earlier publications.
2 H. Shapley. Proc. Nat. Acad. Sc. Vol. 37, p. 191 (1951), and previous 

publications.
3 C. D. Shane. Proc. Amer. Phil. Soc. Vol. 94, p. 13. (1950).
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the projected distribution density of galaxies in a certain region 
of celestial sphere. The distribution shown in this diagram does 
indeed resemble a density distribution which might be expected 
in the case of turbulent motion in a compressible lluid.

The study of the observed space distribution of galaxies from 
the point of view of the theory of turbulence is now being carried 
out by the author in collaboration with Dr. F. N. Frenkiel and 
Mrs. Vera Ruben, and may lead to some interesting conclusions 
concerning the early state of the expanding universe, and the 
problem of the formation of galaxies.

§ -1. Accepting the ideas expressed in the previous section, 
we can now inquire about the conditions which must have existed 
very early in the history of the universe, close to the singular 
point at t = 0. For the temperature variations, and the variations 
of matter density during these very early stages, we may use the 
expressions (7) and (10) derived above.

During the first few seconds of expansion, the temperature 
of space must have been of the order of billions of degrees, cor­
responding to kinetic energy of thermal motion of the order of 
millions of electron volts, and the density of matter was com­
parable to that of the atmospheric air. Thus we may expect that 
at this time matter must have existed in completely dissociated 
state, being composed entirely of neutrons, protons, and electrons. 
As the temperature was dropping in the process of expansion, 
nucleons forming this primordial material, or ylem, must have 
started to aggregate, forming composite atomic nuclei of various 
degrees of complexity. The process must have come to an end 
after about half an hour when most of the neutrons present in 
the original mixture have either decayed or been captured by 
protons and other nuclei, and the temperature dropped to 
4-IO8 °K (60 Kev), being too low for most thermonuclear reactions 
between charged particles. The result of the process must have 
depended critically on the assumed value of the coefficient in 
(10). If the assumed density is too low, most of the neutrons 
will decay into protons before being captured by other particles, 
and the resultant material will be almost exclusively hydrogen. 
If, on the contrary, the density is taken too high, everything 
would be built into helium and heavier elements and no hydrogen 
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will be left. The problem was first investigated by the author1 
with the result that, in order to obtain the observed half-and-half 
hydrogen-helium ratio, one should choose = 0.7-IO-2. Subse­
quent more detailed calculations were carried out by Fermi and 
Turkevich2, who took into account all possible thermonuclear 
reactions up to the formation of He4. The result of their cal­
culations, carried out with o0 = 1.7-10 3, are shown in Fig. 4,

Fig. 4. Variation of relative abundance of lightest elements (by weight) during 
first, half hour of expansion, calculated by Fermi & Turkevich.

and are in good agreement with the observed relative amount of 
Hydrogen and Helium in the universe. Attempts by the same 
authors to carry the detailed calculations of the element formation 
beyond He4 have failed, mostly because of the non-existence of 
any nucleus with mass 5, and this difficulty is not as yet removed.

On the other hand, a general theory of the formation of 
heavier elements by the process of neutron capture, developed 
by the author in collaboration with Alpher3, and later extended 
by Alpher and Herman4, shows that the amount of heavy ele-

1 G. Gamow, I. c.
2 E. Fermi and A. Turkevich. Unpublished. For more details on these 

calculations, see the review by R. A. Alpher and R. C. Herman. Rev. Mod. Phys, 
vol. 22, p. 153 (1950).

3 Alpher, Bethe, and Gamow. Phys. Rev. vol. 73, p. 803 (1948).
4 R. Alpher and R. Herman. Phys. Rev. vol. 84, p. 60 (1951).
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ATOMIC WEIGHT
Fig. 5. Comparison of the observed relative abundance of elements (circles and cros­
ses) with theoretical curves calculated with different values of o0 by Alpher and 

Herman.
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ments formed is also very sensitive to the assumed value of o0. 
Fig. 5 shows the theoretical abundance curves calculated for 
different @0’s in the recent work by Alpiier and Herman1. The 
curves faithfully represent general variation of the relative abun­
dances, and we find that the best fit with observed data is obtained 
by assuming @0 = 1.2-10-3, in good agreement with the results 
obtained by Fermi and Turkevicii.

It is quite remarkable that the calculations pertaining to the 
formation of atomic species lead to about the same density as 
is obtained from purely cosmological considerations pertaining 
to the formation of galaxies. This agreement can be even improved 
if one assumes that the concentration of neutrons in ylem was 
lower than that (~ 100 per cent) assumed in the above calcu­
lations, since lower concentration of neutrons will call for higher 
total density necessary for the formation of elements.

1 R. Alpher and R. Herman. Phys. Rev. vol. 84, p. 60 (1951).
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Conclusions.

Considering the very preliminary nature of the theory described 
in the present paper, and the exceptionally broad scope of the 
phenomena which it attempts to tie together into one consistent 
cosmogonical picture, one should agree that the proposed point 
of view may be accredited with a certain degree of success, even 
though there are still many difficulties standing in its way. In 
the author’s opinion, the most promising feature of the theory is 
the possibility of binding together such seemingly non-related 
observational data as the relative abundance of chemical ele­
ments, on the one hand, and the sizes, masses, and space dis­
tribution of stellar galaxies, on the other. It seems to the author 
that the agreement between density functions obtained from 
direct observations at the present time (/ = 3 -IO17 sec), from the 
conditions necessary for the formation of protogalaxies (at 
/ ~ 2 -1015sec), and from the theory of the origin of atomic 
species (at i 103scc), cannot be entirely coincidental.

The George Washington University.
Washington D. C., U. S. A.

October 1952.

Indleveret til selskabet den ‘21. oktober 1952.
Færdig fra trykkeriet den 12. februar 1953.
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About 20 calculations back in time of nearly parabolic comet
L orbits have been carried out according to the principles set 

out by E. Strömgren1, in order to determine the eccentricities 
of these orbits when the comets were moving at a great distance 
from the Sun. In Publ. 146 from Cop. Obs. (1948) a list of the 

results of these calculations is given showing the changes in -, 

the reciprocal semi-major axis. It is seen that the great majority 
of the orbits have changed in the elliptical direction by the 
backward-computation, and on an average we tind:

considering the distribution as random. Including v. Biesbroeck’s 
calculation for Comet 1908 III2 we find:

A (i ] = ± 0.000568 ± 0.000054 
\a]m

and for an individual orbit:

A flj = +0.00057 ±0.00025.

Considering the conditions in the solar system in a simplified 
way and using a Jacobian integral for the Sun, Jupiter, and a 
comet it is shown that on an average we get:

Here d is the semi-major axis in the original orbit of the 
comet relative to the common centre of gravity of the Sun and 
Jupiter, and a is the same element of orbit in the osculating 

1* 
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orbit relative to the Sun (at an epoch near the lime of perihelion). 
Furthermore m1 and are the mass and radius of orbit of Jupiter, 
Jupiter’s orbit being considered as circular, and r and o are the 
distances comet-Sun and comet-Jupiter, respectively, at the 
moment of osculation. Introducing an average value of £ tapial

to r = 5.203, r=1, and in. = we tind:
1 104/

A (i I = J- 0.000544.

These considerations show that the phenomenon that nearly 
parabolic orbits change systematically in the elliptical direction 
when epochs further and further back in time are considered 
is plausibly explained by the dominating influence of Jupiter.

In 1906 G. Fayet published a great investigation3 showing 
the result of an approximate backward-calculation of 146 nearly 

parabolic cometary orbits. J. II. Oort has computed zl i-j for
Vo in 

these orbits4 and found + 0.000500. I have made a new’ com­
putation excluding Comets 1844 Ill and 1897 I, as Fayet in 
those cases used erroneous elements. The result is:

corresponding to:

zl i-j = + 0.00050 4 0.00067

for an individual comet. (This standard deviation is dilTerent 
from Oort’s value.)

In comparison with the standard deviation found by the 22 
rigorous calculations backwards we lind that this is essentially 
smaller, and in Oort’s opinion the reason must be that by chance 
no great perturbations take place for these 22 comets. The real 
reason is undoubtedly another. The ‘original elements’ of Fayet 
are determined relative to the Sun while the same elements in 
the case of the rigorous calculations are computed relative to 
the gravity centre of the system Sun-Jupiter-Saturn (possibly 
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more planets), and this circumstance is the cause of the great 
standard deviation in Fayet’s case.

This is easily shown by a simple reasoning. II. Seeliger has 
derived (he following Jacobian integral for the motion relative 
to the

V2
or :

V is the velocity of the comet, 2 y and 2 C constants, zq is 
the mean motion of Jupiter, and p and i the parameter and 
inclination, respectively, of the orbit of the comet. If we con­
sider now the motion of the comet at greater and greater distances 

2 ZZZjfrom the Sun the term - is decreasing towards zero, while 
Q

the last term is oscillating about zero with increasing amplitude. 
A great material with (dements relative to the Sun will on an 
average yield :

i. e. the same expression as given above but with a greater 
scattering.

The expression may be used as a matter of course, if we 

take into consideration the changes in - in nearly parabolic 

orbits in forward-calculations. Now it is a well-known fact that 
not one decidedly hyperbolic orbit is found in backward-cal­
culations, and that consequently all these comets originate in 
(he solar system. But the result of the forward-calculations is 
that among the known, near perihelion nearly parabolic orbits 
there are some which are hyperbolic al a great distance from the 
Sun, and consequently these comets are leaving the solar system.

In accordance with the principles used for the above-men­
tioned 1 4G approximate backward-calculations Fayet has carried 
out forward-calculations for 36 nearly parabolic orbits6. A 
computation of A i-j in this case yields:

Sun3 :
2 7<2z?zl J- 2 z? 7r | p cos i —

12km. .<> 2
“3 (r_ — (?
'1

= 2y
2 7?

1-------r

1 ‘) C 2 zzq 2z?,,/- . m.
-p 1 P cos 1 + 73

z 2 2X(z- — 0 ) .
a

— £ ' > —
o
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A (-) = + 0.000409 J 0.0001 10 , 
\<Pm

corresponding to:

A i ) = + 0.0004 1 ± 0.00060
\u /

for an individual comet, in good agreement with the expected 
result. Among these comets Fa yet found 7 with hyperbolic 
orbits. He made a new calculation of these 7 orbits, computing 
by numerical integration perturbations of the first order in the 
eccentricity caused by Jupiter 15—20 years forward in time, in 
conclusion referring the eccentricity to the centre of gravity of 
the system Sun-Jupiter and obtaining the same result.

In order to check Fayet’s approximate calculations I have 
carried out a rigorous calculation of the perturbations for Comet 
1898 VII. The definitive orbit has been determined by C. J. 
Mekeield7 on the basis of 414 observations during the time 
1898 Jun. 11—1899 Dec. 6, and perturbations by Venus, the 
Earth, Mars, Jupiter, and Saturn have been taken into account.

Osculation: 1898 Jun. 21.0 G. M. T.

T = 1898 Sept. 14.0442056 
o = 233°15'18"66
£2 = 74 0 58.17 1 1900.0 

G. M. T.

69 56 0.37 
log i/ = 0.2308587 ± 0.0000009

c = 1.0010336 ± 0.0000164

- = — 0.00006074 ± 0.0000096 
a

Reducing to 1950.0 we find:

o
Q
i

233°.26204
74.71 189
69.93455

1950.0

The corresponding equatorial constants are as follows:

/\. = + 0.1075006
P„ = — 0.2963618
I\ = — 0.9490065

Q.r = + 0.4092631
Qy = + 0.8831024
(F = — 0.2294208

1950.0
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The orbit was traced forward through 27 years by direct 
numerical integration of the rectangular co-ordinates, and 
attractions by the Sun, Jupiter, and Saturn were taken into 
account. To some extent perturbations by Mercury, Venus, and 
the Earth have been taken into account, including the masses 
of these planets in the constant of attraction. The calculation 
was carried out to 7 decimal places and Com hie’s ‘Planetary 
Co-ordinates’ was used. My thanks are due to Mr. P. Naur, 
M. Sc., for some checking.

Perturbed, equatorial co-ordinates of Comet 1898 VII.

U z

1898 May 10.5.......... -0.744165 2.164022 -0.521978
20.5.......... 0.678990 2.066691 0.631351
30.5.......... 0.612088 1.964098 0.7391 10

Jun. 9.5.......... 0.543456 1.855944 0.844768
19.5.......... 0.473115 1.741948 0.947759
29.5......... 0.401126 1.621875 1.047434

Jul. 9.5.......... 0.327594 1.495550 1.143059
19.5.......... 0.252678 1.362889 1.233831
29.5.......... 0.176597 1.223930 1.318886

Aug. 8.5.......... 0.099637 1.078857 1.397338
18.5.......... 0.022149 0.928023 1.468316
28.5.......... + 0.055460 0.771966 1.531016

Sep. 7.5.......... 0.132743 0.611396 1.584756
17.5.......... 0.209232 0.4471 78 1.629032
27.5.......... 0.284468 0.280281 1.663554

Oct. 7.5.......... 0.358030 0.1 11727 1.688264
17.5.......... 0.429548 + 0.057471 1.703333
27.5.......... 0.498733 0.226366 1.709131

Nov. 6.5.......... 0.565371 0.394113 1.706190
16.5.......... 0.629331 0.560000 1.695150
26.5.......... 0.690550 0.723456 1.676716

Dee. 6.5.......... 0.749028 0.884045 1.651614
16.5.......... 0.804809 1.041458 1.620556
26.5.......... 0.857976 1.195491 1.584225

1899 Jan. 5.5.......... + 0.908633 + 1.346031 - 1.543251
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1899 Jan. 15 5 + 0 956898 + 1 193032 — 1 498‘MO
25.5.......... 1.002902 1.636506 1.449621

Feb. 4.5.......... 1.046774 1.7 76503 1.397945
14.5.......... 1.088641 1.913101 1.343588
24.5.......... 1.128631 2.046399 1.286910

Mar. 6.5.......... 1.166861 2.1 76509 1.228222
16.5.......... 1.203446 2.303550 1.167799
26.5.......... 1.238490 2.427644 1.105879

Apr. 5.5.......... 1.272095 2.548915 1.042671
15.5.......... 1.304350 2.667483 0.978355
25.5.......... 1.335343 2.783469 0.913090

May 5.5.......... 1.365151 2.896986 0.847014

25.5.......... 1.421501 3.117049 0.712893
Jun. 14.5.......... 1.473920 3.328497 0.576788
J ul. 4.5.......... 1.522851 3.532070 0.439305

24.5.......... 1.568672 3.728433 0.300918
Aug. 13.5.......... 1.611710 3.918180 0.161989
Sep. 2.5.......... 1.652244 4.101838 -0.022802

22.5.......... 1.690515 4.279879 + 0.116420
Oct. 12.5.......... 1.726734 4.452724 0.255506
Nov. 1.5.......... 1.761085 4.620751 0.394318

21.5.......... 1.793729 4.784296 0.532751
Dec. 11.5.......... 1.824808 4.943663 0.670722

31.5.......... 1.854446 5.099127 0.808165
19(H) Jan. 20.5.......... 1.882755 5.250936 0.945030

Feb. 9.5.......... 1.909835 5.399313 1.081281
Mar. 1.5.......... 1.9357 73 5.544463 1.216886

21.5.......... 1.960651 5.686572 1.351825
Apr. 10.5.......... 1.984538 5.825811 1.486083

May 20.5.......... 2.029600 6.096284 1.75 2 51 8
J un. 29.5.......... 2.071407 6.356984 2.016153
Aug. 8.5.......... 2.1 10334 6.608847 2.276992
Sept. 17.5.......... 2.146694 6.852676 2.535069
Oct. 27.5.......... 2.180753 7.089163 2.790434
Dec. 6.5......... + 2.212736 + 7.318912 + 3.043151
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X y 2

1901 .Jan. 15.5......... + 2.242840 + 7.542453 + 3.293288
Feb. 24.5......... 2.271231 7.760248 3.540920
Apr. 5.5......... 2.298057 7.972712 3.786120
May 15.5......... 2.323446 8.180212 4.028962
.Jun. 24.5......... 2.347512 8.383073 4.269521
Aug. 3.5......... 2.370355 8.581593 4.507868
Sep. 12.5......... 2.392064 8.776036 4.744074

Dec. 1.5......... 2.432389 9.153632 5.210326
1902 Feb. 19.5......... 2.469033 9.517 536 5.668786

May 1 0.5......... 2.502436 9.869145 6.119922
Jul. 29.5......... 2.532966 10.209639 6.564162
Oct. 17.5......... 2.560926 10.540022 7.001896

1903 Jan. 5.5......... 2.586573 10.861160 7.433483
Mar. 26.5......... 2.610125 1 1.173798 7.859248
Jun. 14.5......... 2.631772 1 1.478590 8.279490
Sep. 2.5......... 2.651676 1 1.776109 8.694482
Nov. 21.5......... 2.669979 12.066858 9.104475

1904 Feb. 9.5......... 2.686808 12.351288 9.509700
Apr. 29.5......... 2.702273 12.629797 9.910370
Jul. 18.5......... 2.716477 12.902744 10.306681

Dec. 25.5......... 2.741453 13.433210 11.086943
1905 Jun. 3.5......... 2.762370 13.944921 11.851796

Nov. 10.5......... 2.779763 14.439737 12.602377
1906 Apr. 19.5......... 2.794093 14.919228 13.339689

Sep. 26.5......... 2.805757 15.384742 14.064621
1 907 Mar. 5.5......... 2.815101 15.837451 1 4.777968

Aug. 12.5. 2 822426 1 6 278385 15 480447
1908 Jan. 19.5......... 2.827990 16.708454 16.172704

Jun. 27.5......... 2.832018 17.128472 16.855329
Dec. 4.5......... 2.834697 17.539167 17.528858

1909 May 13.5......... 2.836188 17.941196 18.193783
Oct. 20.5......... 2.836626 18.335153 18.850552

1910 Mar. 29.5......... 2.836119 18.721576 19.499582
Sep. 5.5......... 2.834756 19.100956 20.141252

1911 Feb. 12.5......... + 2.832605 + 19.473738 + 20.775916
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X y z

1911 .Jul 22.5 . + 2 829718 + 1 9 840329 + 21 403899
Dec. 29.5......... 2.826131 20.201098 22.025502

1912 .1 un. 6.5......... 2.821863 20.556382 22.641004
Nov. 13.5......... 2.816921 20.906484 23.250662

1 91 3 A pr ‘>2.5 2.81 1 3O‘> ‘>1 ‘>51675 ‘>3 85471‘>
Sen ‘>9 5 9 8O499‘> ‘>1 592198 ‘>4 45337‘>

1914 Mar. 8.5......... 2.797978 21.928261 25.046839
Aug. 15.5......... 2.790223 22.260047 25.635292

1 915 Jan. 22.5 .... 2.781 725 22.587706 26.218895
Jul. 1.5......... 2.772469 22.911365 26.797791
Dec. 8.5......... 2.762459 23.231 127 27.372112

1916 May 16.5......... 2.751713 23.547080 27.941976
Oct. 23.5......... 2.740270 23.859302 28.507496

1917 Apr. 1.5......... 2.728186 24.167867 29.068776
Sep. 8.5......... 2.715532 24.472853 29.625918

1918 Feb. 15.5......... 2.702389 24.774344 30.179025
Jul. 25.5......... 2.688842 25.072435 30.728200

1919 Jan. 1.5......... 2.674978 25.367229 31.273547
•Jun. 10.5......... 2.660876 25.658840 31.815172
Nov. 1 7.5......... 2.646610 25.947387 32.353181

1 920 Apr. 25.5......... 2.632242 26.232996 32.887682
Oct. 2.5......... 2.61 7824 26.515792 33.418778

1921 Mar. 1 1.5......... 2.603394 26.795905 33.946575
Aug. 18.5......... 2.588983 27.073458 34.471173

1922 .Ian. 25.5......... 2.574605 27.348576 34.992672
Jul. 4.5......... 2.560268 27.621377 35.51 1 166
Dec. 11.5......... 2.545968 27.891974 36.026746

1923 May 20.5......... 2.531689 28.160476 36.539502
Oct. 27.5......... 2.517410 28.426982 37.049515

1924 Apr. 4.5......... 2.503096 28.691584 37.556864
Sep. 11.5......... 2.488708 28.954364 38.061623

1925 Feb. 19.0......... 2.474196 29.215392 38.563858
Jul. 29.0......... 2.459507 29.474725 39.063630

1926 Jan. 5.0......... 1 2.444586 + 29.732404 + 39.560990
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Perturbed equatorial co-ordinates and velocities ,r, y, z, and
dy 

di’ dt’
1925 Feb. 19.0 are given below. The reductions 
dr/ d£ , p • e ,, to the centre ot gravity ol the system Sun-
dt dt

Jupiter-Saturn are also given together with co-ordinates and
, . . _ _ - . d.r dû dz . .velocities x, u, and , , , , , relative to the said centre ol ■' dt dt dt

gravity.

x = + 2.474196
£ = + 0.001637
.r = + 2.475833

= — 0.0145909 dt
d£~ = — 0.0012790 
dt

= — 0.0158699

y = + 29.215392
?/ = + 0.006221

29.221613

du-/ = + 0.2601723
dt
diy—' = + 0.0000067 
dt
dy, = + 0.2601790 
dt

z = + 38.563858
C = + 0.002562
z = + 38.566420

dz, = + 0.5009939 
dt
^5 = + 0.0000341 
dt
dz, =+ 0.5010280 dt

From this we lind the reciprocal semi-major axis with the 
aid of the following equation:

V2 = in2k2 (1 — 27in)

or: 1 2 V2
a r zu2Á'2 (1 + 27/n) '

We gel :
1

- 0.0007747.a
Finally we get:

ë = 1.001321.

Fayet’s result for 1924 Dec. 24 was:

ë = 1.001514

relative to the centre of gravity for the system Sun-Jupiter. The 
rigorous calculation thus confirms Fayet’s result. Hence it is 
certain that this comet mill leane the solar system.

fhe backward-calculation for this comet8 shows that — in the 
a
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original orbit (1886) was 0.0000157. Considering the standard 

deviation of , this hyperbolic residual is illusory and it mav be a ' '
taken for granted that the comet has its origin in the solar system.

A rigorous calculation of the change in the eccentricity when 
tracing a nearly parabolic orbit forward has been carried out 
also in the case of Comet 1904 I9. The main result was as follows. 
In the definitive orbit we had:

0.0005040 4-0.0000079 (1904 Mav).
a

With the aid of a calculation of the perturbations by Jupiter 
and Saturn we got:

+ 0.0005096 lor 1917 Apr. 
a

lienee this comet remains in the solar system. I lie backward­
calculation for this comet10 showed that in the original orbit 
(before perihelion passage):

+ 0.0002165 (1891 Mar.).
a

Hence the passage through the inner parts of the solar system 
has made the orbit more elliptical.

liven if Fayet’s calculations are not absolutely convincing in 
the individual cases they show that rather a great diffusion of 
comets out of the solar system takes place. A rigorous calculation 
has to be carried out in the same way as the investigation of 
original orbits to provide evidence in the particular cases re­
garding the question whether a comet remains in the solar system 
or not. In accordance with the above considerations a special 

interest is connected with tin* orbits with —< about — 0.0005 
ci

at an epoch near the time of perihelion, on condition that tin1 
orbits have been well determined on the basis of observations 
distributed over several months. From the expression <¡ — a 
(1 — e) we deduce that this corresponds to e> 1 + 0.0005 (/, 
where (/ is the perihelion distance.
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Il Tith the aid of an exact formulation of the renormalization method in quan- 
\ A turn electrodynamics which has been developed earlier, it is shown that not 
all of the renormalization constants can be finite quantities. It must be stressed 
that this statement is here made without any reference to perturbation theory.

Introduction.
In a previous paper1, the author has given a formulation 

of quantum electrodynamics in terms of the renormalized Hei­
senberg operators and the experimental mass and charge of the 
electron. The consistency of the renormalization method was 
there shown to depend upon the behaviour of certain functions 
(77 (p2), 2\(p2) and 272(p2)) for large, negative values of the ar­
gument p2. If the integrals

cX(-«)
? «

da O’ = 1,2) (1)

converge, quantum electrodynamics is a completely consistent 
theory, and the renormalization constants themselves are finite 
quantities. This would seem to contradict what has appeared to 
be a well-established fact for more than twenty years, but it 
must be remembered that all calculations of self-energies etc. have 
been made with the aid of expansions in the coupling constant 
e. Thus what we know is really only that, for example, the self­
energy of the electron, considered as a function of e, is not analy­
tic at the origin. It has even been suggested2 that a different 
scheme of approximation may drastically alter the results obtained 
with the aid of a straightforward application of perturbation 
theory. It is the aim of the present paper to show—without any 
attempt at extreme mathematical rigour—that this is actually not 
the case in present quantum electrodynamics. The best we can

1 G. Kâllén, Helv. Phys. Acta 25, 417 (1952), here quoted as I.
2 Cf., e.g., W. Tiiirring, Z. f. Naturf. 6a 462 (1951). N. Hu, Phys. Rev. 80, 

1109 (1950).'
1*
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hope for is that the renormalized theory is finite or, in other 
words, that the integrals

(2)

appearing in the renormalized operators, do converge. No dis­
cussion ol’ this point, however, will be given here.

General Outline of the Method.
We start our investigation with the assumption that all the 

quantities K, (1 —L) 1 and 1
Ñ (for notations, cf. I) are finite or

that the integrals (1) converge. This will be shown to lead to a 
lower bound for 77 (p2) which has a finite limit for —p2 — oo, 
thus contradicting our assumption. In this way it is proved that 
not all of the three quantities above can be finite. Our lower 
bound for 77(p2) is obtained from the formula (cf. I, Eqs. (32) 
and (32 a))

W2) = I <0 |y„| z> P (- (3)
‘ 7 pW = p

It was shown in I that, in spite of the signs appearing in (3), the 
sum for 77 (p2) could be written as a sum over only positive terms. 
Thus we get a lower bound for 77 (p2), if we consider the following 
expression _t

* 1 Q + 1' = P

In Eq. (4), <0 I 7, </> denotes a matrix element of the cur­
rent (defined in I, Eq. (3)) between the vacuum and a state with 
one electron-positron pair (for .r0->— °o). The energy-momentum 
vector of the electron is equal to 7 and of the positron is equal 
to 7'. The sum is to be extended over all states for which 7 + 7* = p- 
We can note here that, if we develop the function 77 (p2) in 
powers of c2 and consider just the first term in this expansion, 
only the states included in (4) will give a contribution. For this 
case, the sum is easily computed, e. 7. in the following way:

b 2?'|<0|/„|z> p = ^^(¿=il<0|/fc|S>|«-|<0|/4|z> |2)
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►

ß|0'(p2) = >, "i <0 |/‘o,| Î, </> I2

1 ße )2 y, < ° I ?0) I </'> yv < o I y(0) I q > < </1 ÿ(ü) I o > yv < q I v(0) 10 > 

' 9 + 9' = P

e* / 2 /n2\ i I 4 m2 1 p2 + 4m2
12tt2\ p2 / \ p- 2 |p2 + 4/n2| ’

(5)

The function Z7(0) (p2) h as the constant limit

values of —p2. This corresponds, of course, to the well-known 
divergence for the first-order charge-renormalization.We shall see, 
however, that with the assumptions we have made here the 
lower bound for the complete /7(p2), obtained from (4), is rather 
similar to ZZ(<l)(p2).

An Exact Expression for the Matrix Element of the Current.
Our next problem is to obtain a formula for <0 | jv | q, q'> 

with which we can estimate the matrix element for large values 
of — (q + q')2. For this purpose we first compute

[¿.(.r), r(3)] rfx'"

- IN S ( 13) y. [j (.r), V (3)] <Px'".
• 'v —

(6)

(Cf. I, Eq. (54).) fhe last commutator can be computed with­
out difficulty if we introduce the following formula for j[f (x)

ieN2 L d2A (x)
= 1 — L + 1— p dx Qx ~ Lôf<4 a A4 («) (?)

Z V
with

’’/¿A = (7 a)
and

SÅ (æ) = q [v5 (æ)> y¿v> 0)1- (7 b)

fhe expression (7) is written in such a way that the second time- 
derivatives of all the A ’s drop out. With the aid of I, Eqs. (4)— 
(7) we now get
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[¿, (O. V (3)]®'"- ®. = [«;. GO, V (3)1

It thus follows that

[À, GO. V>"" (O)] = - N i S(13) [j GO, 7(3)] dx"* •- X '

We then proceed by computing

<o|([4(0,v><0>(æ%F0,(0')}|o>

= fz'z S O ) 7/. s (* 2) - N j S (13) dx" (10)

X [<01 [j;i (x), {^(0)(2), /’(3)}] 10> — <01 {[jfl(.r), y>(°) (2)], /’(3)} 10 >].

If this expression is considered as an identity in x' and x" it 
will obviously give us a formula for <0 | j¡( | q, q'} and for 
<</ \j/t I r/'). (Cf. I, Eqs. (68) and (77).) We transform the right­
hand side of (10) in the following way:

W‘»(2), f(3)} = .víí/-(3), 7(4)}S(42)dx‘v-¿ [ferA(3) + Ä]S(32) (II)
and, hence,

<o I [/„GO. »<»>(2), /(3)}J I 0> = Z; S(32)<0 I [j^x), Az(3)] | 0>

+ iv( d.rIV<0 I [j (x), 7(3), I 0>S(42).
V— 00 A

(12)

'I'he last term ill (10) can be treated in a similar wav:

[jp O) • y(0) (2)] = N \ [j^ (x), f (4)] S (42) d.rIV + y> (x) S (.r 2) (13)
*- X J

and

N \S(13)dx"'<0|»(O,/(3)}|0> = -<0|{v(O>V(0)(V)• - X
+ ¡N S ( 13) Z4 y (3) dV"} 10> = ¡S ( 1 x)

* x" = X

(14)

«
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Collecting (12), (13) and (14) we get

<o I {[jtl (æ) > y>(0) (æ )], y»(0) (æ")> 10 >
- [ 1 + 2 (JV - I )] f,,z s ( 1 X) F s (x 2)

- e jj S(13) n S (32) dx'" <0 | [J^ (x), AÂ (3)] 10>

-Aid dx'" Ç <7xIV S (13) <0 I [L (x), (rø), 7(4)}] | 0> S (42) • ’- X • - X
(iX .tX

+ -V2 \ dx'" \ d.vIV S (13) <0 | </-(3), [j (x), f (4)]) I 0> S (42).
•’--X •—00 A

The second term in (15) can be rewritten with the aid of the 
functions Z7(p2) and /7(p2).

<o I [/«(*)» ¿;.(3)] 10> = j¡ Z)b(34) <0 I [jM(x), j\(4)] | 0> d.rIV 

í /V OH3*) / \ r ’Al Z/<P")
= /2 “)3 \ dpe e (/>) ó/<a] —i ■

We are, however, more interested in the expression

i [1 + e (x 3)] <0 I [j/t(.r), AÂ(3)] I 0> = - Í dpe'p( r3) [n (pz)

+ í™ (p) n (p2)] + i [1 + £(x 3)]

for .r0 = .r0. It thus follows

where
*<*>=¿y

•J 1
(17 a)

Obviously, we have
0 (3 .r) = 0 (18 a)

d 0 (3 .t) • ft Zn\ £ /“ ~"f \= til (0) o (.r x ) (18 b)

d" ø (3x) 
dxlt dx}/Z A

a2__
dx/(ax. [e(x 3) 0 (3 x)] + 2 in (0) (x 3).

(15)

(16)

(10

(19)
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Using the equation

we get
^^5(13)^5(32) = 0, (20)

/»+<»
- A i [ 1 + s (x 3)] S ( 13) S (32) <0 I (x). (3)] I o> rfx'"

♦J— x

c/pe'p(l'î)S(13)y/iS(32) [H (p2) + ¡tie (p) H (p2)]

+ z í“¿ 5 (1 æ) s 2) •

Introducing (21) into (15) we obtain

<0|{[j/æW°>(x%ÿ<°>(æ")}|0>
= i^dx"U2^)4ei',("3>S(13)y/(S(32)[1-/7(/)

+ n (o) — inc (p) n(p2)]
-N^dx"'^dx^S(13) <0\[Jl¡(x), \f(3), /(4)}]|0>S(42)

t.— oo t— oc

+ A’2 dx" dx-IV S (13) <0 I (f(3), [jfl (x), 7(4)]} I 0 > S (42)
•_— oc V— 00

+ s (1 x) ns(x2).

The first term in (22) describes the vacuum polarization and is 
quite similar to the corresponding expression for a weak external 
field (cf. I, Appendix). The remaining terms contain the ano­
malous magnetic moment, the main contribution to the Lamb shift 
etc. Introducing the notation

- N2 0 (x 3) 0 (34) < 0 I [jfl (x), {/• (3), 7(4)}] | 0 > 
+ N2 0 (x 3) 0 (x 4) < 0 I (3), [jfl (.r), 7(4)]} | 0 >

2ze(2V—1)
1 —L

^^t4y4ô(x-3)ô(34)

íp'(3x) + íp(x4) (P> P)

(23)

(21)

(22)
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♦

0(æ) = I [1 +e(æ)],

obtain from (22)
<o l/J <7, <?'>

= <o I I q, (}'y 1 — 77 ((q + q')‘2) + Il (0) — inll ((7 + g')2)

+ ie < 0 I y/0) | q > (— q, q) < 0 | y>(0) | 7 >.

This is the desired formula for the matrix element of the current.

Analysis of the Function Ap(p',p)'

We now want to investigate the function A[i (j)', p) in some 
detail, especially studying its behaviour for large values of 

(</ + </ )2 in (24). For simplicity, we put p, = k 4= 4 and study

/>) = jj j d.v"'dx" e~‘" N2 (0(.v 3) 0(x 4) < 0 | { 7(3),

ÍÁ (*). Z(4)] } I 0 > — 0(x 3) 0 (34) < 0 | tø(x), { f(S), f(i) ! ] | 0 > }.

We treat the two terms in (25) separately. The first vacuum ex­
pectation value can be transformed to momentum space with the 
aid of the functions

4+) (/>'. !>) = V2Z< 0171 z' > < z' tø | z > < z 17| 0 > (26)
p(r) = p 
p(--') =p'

4 ’</''■/-> = V2Z<0|/’l--'X:'|7,..|:><z|r|0> (27)

4+) </>'. p) = vaZ< 01 A| z' > < z' 171 z > < z tø I 0 > (28)

4_>(p'.p) = V2Z<O|Á|z'><z'|7|z><z|7|O>. (29)

»
>

It then follows that
< 01 (7(3). tø(«). 7(4)] } I o > - £’{ e'"'*3”+",<I',!4+I (/>'. p)

p. p'
- el!>- (34) + ip (4.) n(+> /() + c(p-<x4) + (p(43) ß(_) (/< p) 

(24)

(25)

(30)
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Our discussion started with the assumption that all the renorm­
alization constants and, of course, all the matrix elements of 
the operators j (x) and / (.r) are finite. As this is a condition on 
the behaviour of, for example, the function 77 (p2) for large values 
of — p2, and as this function is defined as a sum of matrix ele­
ments, it is clear that we also have a condition on the matrix 
elements themselves, i. e. on the functions A and Ii defined in 
(26)—(29) for large values of—p2,—p'2 and —(p—p')2. To get 
more detailed information on this point we consider the expres­
sion

/IV

1—L
with

< Z I IJ/t (æ) • (*')] I z >
. L dzD(x'-x) , C , z ,,x nz , ,,x-iT^L ^dx o^r+\dx F^(x x )/)(r~-T) 

/< i* ( i

(31)

(32)

(cf. I, Eq. (A. 8) and the equation of motion for A^(.r)). Sup­
posing, for simplicity, that |z) does not contain a photon with 
energy-momentum vector k, we have

Writing

7^2 (.V — *") = 6 (•? — *") \ dpe,p (®_*} F^. (p) ( 34 )

and using the formula

e(x — x") = -1 P\dr eiT(x.~x«> (35)
in At

•7

we get
1 i *

iF^tx-x") = + ;.(/>)) (36)

with

Fp). (/>) = P \ V F'd ’Po + T') ‘ (37)
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We further note that from (34) it follows that

O’) = VE<z\h Iz ><z IJtl Iz>“ yy<z \Jfl \z><z' I Iz>• (38) 
♦ p(:'> = p(-) 4. p p(-') = p(-)—p

If every expression appearing in our formalism is finite, the 
integral in (37) must converge. This means that1)

lim (39) 
P«->±®0

Putting /i = Â = k we then get from (38) and (39)

lim y’|<z|//.|z'>|2(- 1 ) a;;) + Ay = o (40a) 
Po->* Z>l:/,=7>(:)+p

and
lim y |z'>|2(— l)Ay> + xi:'’ = 0. (40 b)

p0^---- X p(ï')=pO)_p

If we first consider a state |z) with no scalar or longitudinal 
» photons, it can be shown with the aid of the gauge-invariance

of the current operator (cf. I, p. 426. Eq. (47) there can be 
verified explicitly with the aid of (32) and (33) above) that 
only states |z'> with transversal photons will give a non-vanish­
ing contribution to (40 a) and (40 b), and these contributions are 
ail positive. We thus obtain the result

lim|<z|/fc|z'>|8 = 0 (41)
IP^-P^I-*00

if none of the states |z> and | z > contains a scalar or a longitu­
dinal photon. Because of Lorentz invariance which requires that 
Eq. (41) is valid in every coordinate system, it follows, however, 
that (41) must be valid for all kinds of states. If we make a 
Lorentz transformation, the “transversal” states in the new 
coordinate system will in general be a mixture of all kinds of 

k states in the old system. If (41) were not valid also for the scalar
and longitudinal states in the old system, it could not hold for 
the transversal states in the new system.

b The case in which the integrals converge without the functions vanishing 
will be discussed in the Appendix.
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From equation (41) we conclude that

lim A<¡. ) (p', p) — 0 
—(p—p')*-*00

lim >(p',p) = 0
— P»->OC

lim B^ (p, p) = 0.
— p'2-> X

(42 a)

(42 b)

(42 c)

It is, of course, not immediately clear that the sum over all the 
terms in (26)—(29) must vanish because every term vanishes. 
What really follows from (40) is, however, that the sum of all 
the absolute values of ^z\j/l\z'y must vanish. If the limits in 
A and B are then performed in such a way that p2 and p'2 are 
kept fixed for A and (p—p')2 and one of the p2’s are kept fixed 
for the B's, equations (42) will follow.

To summarize the argument so far, we have shown that if 
we write

<0|{f(3),[jt(x)7(4))}|0> = + (43)

we have
limF). (p, p) = 0. (44)

— (p—p')’->=«

Introducing the notations

Fk (P'> P) = ~ Fk (p — £T> P) <45 a)

and

Fk (p'> P) = \ ~ F* P + eT) (45

(e is a “vector” with the components ek = 0 for k + 4 and 
£0 = 1) we find from (44) and the assumption that the integrals 
in (45) converge that

limFfc(p',p) = limFfc(p',p) = 0 (46)
—(p—p')2->oo —(p—p')’->oo

(cf. the Appendix). With the aid of the notations (45) we can 
now write
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►

O (.r 3) O (x 4) < O I {f(3), [jk (.r), /(4)]} 10 >

' k k J J ' <7’'(3x) + Íp(x4) r z t X
= (2 \ \dpdp e -k

•J V

— st2 Fk (/>', />) + in (Fk (p', /)) + Fk (p', />))].

(47)

In quite a similar way it can be shown that the second term in 
(25) can be written in a form analogous to (47) with the aid of 
a function Gk(j)',p) which also has the properties (44) and (46). 
It thus follows

lim Ak(p',p) = 0. (48)
—(p—P')*^-oo

It must be stressed that this properly of the function Ak(p', p) 
is a consequence of (41) and thus essentially rests on the as­
sumption that all the renormalization constants are finite quan­
tities.

It is clear from (24) that the function A„ transforms as the 
matrix y/t under a Lorentz transformation. The explicit verifica­
tion of this from (23) is somewhat involved but can be carried 
through with the aid of the identity

0 (x 3) 0 (x 4) 7(3), [j^ (x), f(4)]} — 0 (x 3) 0 (34) [j^ (x), f (4)}]
= 0(x4)0(.t3)>7(4),[¿,(x),/-(3)]}-0(x4)0(43)[;/í(.v)J/'(4)./-(3)¡] | G' 

and the canonical commutators. Eq. (49) can also be used to 
prove the formula

-C-1zl/,(-Q',7)C = (50)

which is, however, also evident from (24) and the charge in­
variance of the formalism. From the Lorentz invariance it fol­
lows that we can write

^(p'.p) [yflF9Q + p/lG^Q-]-p'flH(̂ ](iyp + m)Q (51)
► e'=o,i e=o,i

where the functions F, G and H are uniquely defined and de­
pending only on p2,p'2, (p— p')2 and the signs £(/>), e(p') and 
e(p— p'). From (50) it then follows
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Utilizing (51) and (52) we get

(52 a)

(52 b)

ze < O I y»(0) I q' > (— q', q) < 0 | y>(0) | q > = < O | | q, q > R ((q + ç')* 2 * *)

Except for the possibility of N being exactly - Í independent of
m2\ 2 '

e2 and —
R i

+ ¿ 5 + <7Z)2) (fy — < 0 I V’(0) I <1 X 0 I V’<0) I q >

where, in view of (48),

Jim R((q + z/)2) = lim S((q + q')2) = 0. (54)
— (<7 + q')2-> x — (q + <7')2->oo

The equations (53) and (54) are the desired result of this pa­
ragraph.

Completion of the Proof.
We are now nearly at the end of our discussion. From the 

assumptions made about 77 (p2) (and its consequences for 77 (p2), 
cf. the Appendix), Eqs. (53) and (54), the limit of Eq. (24) 
reduces to

- Z X N— 1 l+77(0) + 21-—¿

Our inequality (4) now gives

(55)

77 Î<o|4|Ç1Q'>|2
q + q' = p

<? + </' = p

77<°>(p2) Í2N — 1\2 (¥X)-
(56)

1
“ 2

we have then proved that, if all the renormaliza-
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I

►

►

tion constants K, - and 7------ r~r are finite, the functionN (1—L) 
n (p2) cannot approach zero for — p2-+ 00. This is an obvious 
contradiction and the only remaining possibility is that at least 
one (and probably all) of the renormalization constants is in­
finite.

The case N = - *s ra^lcr t°° special to be considered seriously.

We can note, however, that N must approach 1 for e -> 0 and 
that one of the integrals in I Eq. (75) will diverge at the lower 
limit for p —> 0, independent of the value of e. The constant N

could thus at the utmost be equal to ; for some special combina-

tion (or combinations) of e2 and —-. As p is an arbitrarily 
/z

small quantity it is hardly possible to ascribe any physical 
significance to such a solution, even if it does exist.

The proof presented here makes no pretence at being satis­
factory from a rigorous, mathematical point of view. It contains, 
for example, a large number of interchanges of orders of inte­
grations, limiting processes and so on. From a strictly logical 
point of view we cannot exclude the possibility that a more 
singular solution exists where such formal operations are not 
allowed. Il would, however, be rather hard to understand how 
the excellent agreement between experimental results and lowest 
order perturbation theory calculations could be explained on 
the basis of such a solution.

Appendix.
It has been stated and used above that: if

/ « 00
/•(.r) = P \ dg (f(0) = 0) (A. 1)

1 y x
VO

where f (.r) is bounded and continuous for all finite values of x 
and fulfills

|/'(x + ÿ)-J(x)|<Jf |y| for all .r (A. 2)
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and if the integral converges, both /’(.r) and f(x) will vanish for 
large values of the argument. This is not strictly true, and in 
this appendix we will study that point in some detail.

We begin by proving that if the integral in (A. 1) converges
absolutely and if

lim log x 1 f(x) 1 — 0 (A. 3)
x->oo

it follows that
lim /’(x) = 0. (A. 4)

X-> ± x
(•*
i dx(Note that the integral \---- ------- is not convergent and that thei «X * log »X
V

vanishing of f (x) is already implicit in (A. 3).) To gel an upper 
bound for f (.r) when x > 0 we write

(-joo /zjx/2 />3x/2/'jse \U-ædy- (A-5)

Jo \V0 Jl/2 V3x/2/

(The limit x -> — oo is simpler and need not be discussed ex­
plicitly.) The absolute value of the first term in (A. 5) is ob­
viously less than

pX/2
|\ I f(i/) I <</ < const.

VO

r*x/2
2 I dj/ 
X \ logy

VO

-40. (A. 6)

The last term can be treated in a similar way and yields the
result

(A. 7)

The remaining term can be written

(A. 8)
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In view of (A. 2) and (A. 3), the three terms in (A. 8) vanish 
separately for large values of x. It thus follows

lim /'(.r) = 0
q. e. d.

As the function II (jF) is positive the condition (A. 3) seems 
rather reasonable from a physical point of view. On the other 
hand, the functions Fk in (45) are not necessarily positive. It 
is, however, also possible to construct a more general argument 
where (A. 3) is not used, and where even the vanishing of f(x) 
is not needed. Instead, we then require that from

7(æ) = P \ dy ; f(y) = 0 for y < 0 
\y — x

VO
will follow

(A. 9)

(A. 10)

where both f(x)
Note that

and f(x) are finite.

,— iw1x—iwty IV i IV%

I tl>l ti>21 (A. 11)

It then follows that the integral

xx
C|l + f(æ) + iæ f(x)\* dx >

is divergent, because the second term is convergent in view of 
(A. 10). This is everything that is needed for the proof.

nan.Mat.fys.Medd. 27, no. 12. 2
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It is, of course, possible to construct functions f(x) where 
(A. 10) does not follow from (A. 9). In that case we are not 
allowed to interchange the order of the integrations in (A. 11); 
but we have already excluded such cases from our discussion.

For simplicity, the statement that the functions “vanish” for 
large values of the variables has been used in the text. If a more 
careful argument is wanted the phrase

“the functions have the property that the integral

X

converges” should be substituted for the word “vanish” in many 
places.
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Introduction.

I^he energy loss of protons in foils of various substances lias 
been determined as a function of the proton energy. The 

sharp resonances for proton reactions have been used for 
analyzing the energy distribution of a beam of protons after its 
passage through a thin layer of various substances. Because of 
the energy loss in such a layer, the resonance curves are found 
at a higher voltage when a foil is inserted in the beam than 
when no foil is inserted. The shift of proton energy gives the 
energy loss in the foil.

Moreover, a broadening of the resonance curves obtained 
when a foil is inserted in the beam makes it possible to determine 
the energy straggling. Some measurements, concerning mainly 
beryllium and mica, have been published earlier1^2)’ \ In the 
present paper, experimental results are reported for other materials 
of higher atomic numbers and the range of proton energy is 
extended to 2 MeV.

Experimental.
The experiments were carried out at the Institute for 

Theoretical Physics in Copenhagen with the pressure insulated 
van de Graaff generator. The rotating compensation voltmeter 
was calibrated by the proton capture resonance in aluminum at 
503 keV and the linearity was checked by measuring the 503 keV 
resonance with protons and molecular ions.

The proton current was of the order of 2 «A when no foil 
was inserted in the beam; when a foil was used the current was 
adjusted to about 0.2 /zA. The current integrator'^ consists of a 
recorder, which counted the pulses of a neon lamp, discharging 
a condcnsor constantly charged by the target current. At the 
lowest energies where the stopping power and, consequently, the 

1* 
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heating of the foil are greatest, and especially for thicker foils, 
the integrator could not be used. In such cases, the beam current 
was measured with a sensitive galvanometer and kept constant 
by means of small variations of the voltage of the probe in the 
source.

As y-ray counter a Geiger-Müller tube, 10 mm in diameter 
and 40 mm long, was used. It was placed in a lead box as close 
to the target as possible and connected to a scale-of-32. The 
neutrons were detected by means of boron neutron counters 
surrounded by paraffin wax. An electronic switch4' blocked the 
counting of both y-rays and neutrons when the acceleration 
voltage differed by more than about 2 keV from the desired value. 
This blocking of the counting arrangement makes it possible to 
obtain sharper resonance peaks.

The foils were placed in a small disk with six circular openings, 
some of which were covered by foils. The disk was mounted in 
the acceleration tube at a distance of 35 cm from the target in 
order to reduce the background radiation from reactions in the 
foil as far as possible. The disk could rotate on an axis through 
its center, and all openings were placed in the same distance 
from the axis. With the aid of a magnet the different openings 
of the disk could be brought into the path of the protons. Foils 
of different thicknesses were used as listed in the tables. They 
were cut into small round pieces of a diameter of 1 1 mm after 
their thickness had been determined by measuring the weights 
and areas of larger pieces.

Because of the stop in the Faraday cage the scattering in the 
foil decreases the current to the target. Moreover, the straggling 
in the foil causes a broadening of the resonance peak and a 
consequent diminishing of the peak intensity. For these reasons 
only the strongest peaks could be used as energy indicators. 
The following peaks have been used: Proton-capture resonance, 
in fluorine at 339 and 660 keV7', in aluminum al 630, 986, and 
1255 keV4', and in chlorine at 860 keV8'. Due to the great density 
of the levels none of the capture processes can be used at higher 
potentials. The measurements about 2 keV are based on the 
(p, n) resonance at 1974 keV8' in the process Cl35 (p, n) A35. 
Measurements at the lowest proton energies were carried out 
with the molecular beam, since focussing was unstable at low 
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generator voltages; however, this should not influence the results, 
as the molecules are split up as soon as they hit the foil.

Targets were prepared by evaporation of calcium fluoride, 
aluminum or lead chloride in vacuum on small disks of silver 
or copper. Copper backings were used for y-ray observations 
from proton capture reactions with a proton energy smaller 
than 0.9 keV, and for the (p, n) reaction at 2 MeV. Silver targets 
were used for y-rays from capture reactions with a proton energy 
higher than 0.9 MeV. The small width of the resonance levels 
indicates that a target with a stopping power of 1—2 keV, giving 
saturation intensity, is suitable. However, the broadening of the 
peaks due to the energy straggling in the foil, especially at lower 
energies, necessitates a thicker target. Accordingly, many targets 
of different thicknesses were used.

Most of the measurements were performed on foils. Both 
commercial foils which are rolled out and foils prepared in the 
laboratory by evaporation in vacuum were used. The com­
mercial foils arc rather inhomogeneous and are only convenient 
for the determination of the stopping power, because the broad­
ening of the resonance curve in these cases is not only due to 
the straggling in the foil. Foils produced by evaporation seem 
to be rather homogeneous. In a previous paper3) the straggling 
in foils of beryllium and mica has been described.

Besides foils also sandwich targets have been used. They 
were prepared in the following way. On 3—4 disks of the support 
material (copper or silver) a layer, containing the energy in­
dicator (fluorine, aluminum or chlorine), is evaporated. One 
or two disks are removed from the evaporation chamber, while 
the stopping substance (Be, Al, Cu, Ag or Bi) is evaporated on 
the energy indicator layer of the remaining targets*.

In this way, heating of the foil is avoided and a greater beam 
current can be used. Moreover, a decrease in the beam current 
caused by scattering is prevented. However, some difficulties 
arose from the determination of the thickness of the stopping 
layer. The increase in weight of the target caused by the stopping 
layer was often too small as to be measured with sufficient 
accuracy.

* Thanks are due civilengineer Mr. O. B. Nielsen for preparing sandwich 
targets.
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Before evaporation of the stopping substance, the targets were 
placed on pieces of glass. Both the targets and the glass around 
the targets were covered with stopping material. After removal 
of the targets the thickness of the stopping layer was found by 
measurements of the interference between the rays coming from 
the clean surface of the glass behind, the target and the rays 
from the surface of the stopping layer. In many cases, however, 
the thicknesses found in this way disagreed with results obtained 
in other ways. This may be due to different reflections of the 
molecular particles from the metal surface of the target itself and 
from the surface of the glass.* Therefore the thickness of a 
stopping layer was determined by comparing the energy loss of 
the layer with that of a foil with known thickness. Thus, a value 
of the stopping power found by means of the sandwich targets 
is determined relative to measurement with foils. However, the 
principal value of such targets lies in their homogeneity and in 
the possibility of obtaining better resonance peaks for the deter­
mination of the straggling.

In order to lind the energy loss A E and the straggling Q in 
a foil or in a sandwich target, the energy distribution of the 
peaks is approximated by the Gaussian, even though this should 
not always be the correct shape, at least not for the peaks 
measured without foil or stopping layer, where the width is due 
mainly to the thickness of the target.

As it was shown in greater detail in the previous paper3), 
the resonance curves are transformed into straight lines by means 
of tables9) or probability paper. The energy loss A E is the dif­
ference between the energies corresponding to the mid point of 
the straight lines (probits = 5) found with and without a foil, 
respectively.

Since the standard deviations are added geometrically the 
true straggling D is found by means of the formula Q — —
where £?2 and £?1 are the standard deviations corresponding to 
the measurements with and without foil, respectively. These 
deviations can be found from the slopes of the straight lines.

A E and Q are thus determined in a rather unambiguous 
way. In most cast's, the resonance curves arc symmetrical and

* The author is indebted to mag. scient. Rahbek for carrying out the inter­
ference measurements.



Nr. 13 7

the transformed curves are straight lines. In such cases, the 
most probable energy loss and the mean energy loss arc the 
same. By far the greatest number of the resonance curves could 
be transformed to straight lines. The shift could be found with 
an accuracy of less than 1 keV and the slope was determined 
accurate to ten per cent.

In some cases a transformed curve was not a straight line 
because of a long tail of the resonance curve. In such a case 
the most probable energy loss and the mean energy loss are 
not identical; however, the difference is small, about 1 keV. In 
comparison with a shift of 30 -50 keV this uncertainty does not 
influence considerably the value of the stopping power. The 
value for the straggling is greatly affected by the deviations 
from a straight line. In a few of these cases, an attempt was 
made to determine the straggling by determining that Gaussian 
distribution which, folded with the resonance curve found 
without foil, gave the best lit to the curve obtained with a foil 
inserted in the proton beam. However, no greater accuracy could 
be obtained in this way. These values of the straggling may 
thus be rather uncertain (cf. the spread of the points on fig. 3).

Results.
The results obtained are presented in the following tables, 

which also include the values published in previous papers1, 2’3)).
The columns show:

1) Thickness t of the stopping material in mg per cm2. The 
areas of the foils are calculated from measurements with a 
travelling microscope and their weights are determined with 
a microbalance. The thicknesses obtained in this way arc 
believed to be correct within a few per cent. After the measure­
ments the thicknesses were checked and found to be un­
changed. When a sandwich target was used, further details 
are given in a footnote.

2) The energy shift A E in keV.
3) The proton energy E in keV. The energy given in the table 

is the mean value of the proton energies of the peaks 
of the resonance curves found with and without stopping 
material.
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4) Stopping power of the substance measured in keV per mg 
per cm2.

5) Standard deviation in keV, without stopping layer.
6) Standard deviation _02 in keV, with stopping layer.
7) Straggling Q in keV.
The straggling is determined neither for commercial foils nor 
for cases where the resonance peak is too small to give a tolerable 
accuracy in the value for the standard deviation.

Beryllium. Only foils prepared by evaporation have been 
used and the total contamination of other metals was found, by 
spectral analysis, to be less than 0.1 per cent.

In a previous paper1) two curves found without and with 
foil are shown.

Table I. Beryllium.

t 

thickness

mg/cm2

1

ztE

shift

keV
2

77

proton 
energy

keV

3

S 
stopping 

power 
keV/ 

mg/cm2
4

Q. Q2
standard 
deviations 

keV keV

O 
stragg­

ling 

keV

75 6

0.609 230 455 377 4.2 9.5 7.2
0.222 73 540 329 4.4 6.1 4.2
0.222 62 661 279 1.5 5.1 4.9
0.222 64 662 288 4.2 5.3 3.3
0.245 69 665 282 —- a) —
0.222 53 798 239 — a) —
0.222 48 1010 216 1.4 5.0 4.8
0.222 48 1010 216 1.7 4.2 3.9
0.245 53 1013 216 1.3 4.2 4.0
0.609 126 1049 207 2.5 6.6 6.1
0.222 42 1133 189 2.9 5.3 4.5
0.222 45 1135 203 2.9 5.5 4.7
0.222 42 1276 189 1.7 4.9 4.6
0.609 108 1310 177 — b) —
0.222 39.5 1392 178 —- b) —
0.609 101 1422 166 — b) —
0.610 85 2016 139 4.2 8.2 6.6

a) the intensity of the resonance is too low to determine ß2.
b) the two peaks Al 1372 and Al 1379 are superposed, Q2 cannot be determined.
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Mica. The foils were prepared by splitting mica into thin 
pieces. On account of the optical transparency of a mica foil, 
information about the homogeneity can be obtained by inter­
ferometer measurements, according to the method of Tolansky. 
Details of these measurements arc published in the earlier 
paper3). Thus, only for the mica foils it has been possible to 
check the homogeneity directly.

Table II. Mica.

t 

thickness 

mg/cm2

1

zlE 

shift

keV

2

proton 
energy

keV

3

s 
stopping 

power 
keV/ 

mg/cm2
4

ß2
standard 

deviations

ß 
stragg­

ling 

keV

7

keV

5

keV

6

0.336 101 389 300 3.6 5.8 4.5
0.336 75,4 668 225 3.4 5.6 4.4
0.336 59 1016 176 1.7 ‘ 5.2 4.9
0.336 59 1016 176 1.7 5.0 4.7
0.441 76 1024 172 1.6 6.4 6.2
0.441 76 1024 172 1.6 6.1 5.9
0.441 76 1024 172 1.6 5.9 5.7
0.441 76 1024 172 1.5 6.3 6.1
0.665 111 1041 168 1.7 7.6 7.4
0.665 113 1042 171 1.7 8.0 7.8
0.73 115 1047 158 3.5 7.2 8.3
0.78 131 1051 168 3.7 7.7 6.8
0.76 130 1051 171 3.5 8.0 7.2
0.76 130 1051 171 3.6 6.7 5.7
1.02 169 1070 166 1.9 9.4 9.2
1.02 173 1072 170 2.1 9.5 9.3
1.02 172 1072 168 2.1 9.1 8.9
1.02 172 1072 168 1.9 9.0 8.8
1.02 175 1073 171 1.7 8.7 8.5
1.23 212 1092 172 3.0 9.5 9.0
1.71 284 1140 166 3.8 12.5 11.9
1.06 155 1180 146 2.5 9.5 9.2
0.336 48 1279 143 3.0 4.8 3.8
0.336 36 1992 107 4.8 5.9 3.5
0.730 79 2014 108 4.8 8.5 7.0

Aluminum. In most measurements commercial foils were
used. The total contamination of other substances was found
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by chemical analysis to be less 
the straggling is determined for

than 1 per cent*. No value for 
the commercial foils. Sandwich

Table 111. Aluminum.

t dE E s k>2 Q

thickness shift proton stopping standard stragg-
energy power deviations ling

mg/cm2 keV keV keV/ keV keV keVmg/cm2
1 2 3 4 5 6 7

0.23 a) 58 368 252 _ _ _ _
0.38 a) 95 387 250 — — —
0.23 a) 42 681 182 — — —
0.38 a) 70 695 185 — — —
0.23 a) 38.5 1005 167 —
0.38 a) 59.5 1016 157 — — —
0.48 72 1020 150 3.5 6.9 6.0
0.50 82 1025 164 3.5 7.0 6.0
0.23a) 31 1270 135 — — —
0.38 a) 53 1281 139 — — —
0.23 a) 23 1986 100 — — —
0.38 a) 37 1993 98 — — —
0.37b) 37 1993 100 4.8 7.2 5.4
0.37 b) 39 1994 105 4.8 6.2 4.0

a) commercial foil.
b) sandwich target. Thickness found from the width of the (p, y) resonance 

radiation of the stopping layer at 986 keV.

targets can only be used at the (p, n) resonance of chlorine al 
1974 keV because the aluminum itself will give rise to disturbing 
radiation if (p, y) reactions are used as energy indicators.

Copper. Only commercial foils and two sandwich targets 
have been used. The contamination of other substances was 
found by chemical analysis to be about 5 per cent. As, however, 
the main part of the other substances was zinc, whose atomic 
number differs only by one unit from that of copper, this con­
tamination does not influence the results appreciably.

Thanks are due amanuensis T. Langvad for carrying out the analysis.
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Table IV. Copper.

a) commercial foil.
b) sandwich target. (Chlorine as indicator) thickness determined from the 

shift of the (p, y) resonance at 860 keV.

t AE E s ß

thickness shift proton 
energy

stopping 
power

standard 
deviations

stragg­
ling

mg/cm2 keV keV keV/ 
mg/cm2 keV keV keV

1 2 3 4 5 6 7

0.49 a) 73 376 149
0.58 a) 90 384 155 — -— —
0.49a) 60 690 122 — — —
0.58 a) 70 695 121 — — —
0.59b) 64 892 — —
0.84b) 91 905 — 2.5 6.5 6.0
0.49 a) 53.5 1012 109 — — —
0.50 a) 53.0 1012 106 — —- —
0.58 a) 56.5 1014 98 — — —
0.49 a) 46 1278 94 — — —-
0.58 a) 51 1281 88 — — —
0.49 a) 35 1991 72 — — —
0.58 a) 46 1997 79 —- — —
0.59 b) 41.4 1994 70 5.4 7.5 5.2
0.84 b) 54 2001 64 4.8 8.1 6.5
0.84b) 56 2002 67 4.3 7.0 5.6

Silver. Commercial foils, foils prepared by evaporation, and 
sandwich targets were used. The contamination was found by 
chemical analysis to be less than 1 per cent.

Table V. Silver.

(continued)

t Zll? E « ßi ß2 ß

thickness shift proton stopping standard stragg-
energy power deviations ling

mg/cm2 keV keV keV/ 
mg/cm2 keV keV keV

1 2 3 4 5 6 7

0.432 b) 59 369 137 4.8 6.3 4.1
0.42 a) 60 370 143 _ — —
0.42 a) 60 370 143 — —■ —-
0.36 a) 51 365 142 — — —
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Table V. Silver, (continued)

1 AE E s O

thickness shift proton
energy

stopping 
power

standard 
deviations

stragg­
ling

mg/cm2 keV keV keV/
mg/cm2 keV keV keV

1 2 3 4 5 6 7

0.59 a) 84 381 142 __ _
1.51 209 445 138 3.8 8.9 8.0
0.225 c) 22.8 641 101 2.2 3.7 3.0
0.235 c) 22.6 641 96 2.1 3.6 2.9
0.285 c) 32.5 646 114 2.7 4.7 3.8
0.36 a) 36 678 100 — — —
0.432 b) 45 682 — 5.5 7.0 4.4
0.442 a) 44 683 100 — — —
0.59 a) 64 692 108 — — —
0.51 e) 47.5 880 93 2.2 6.0 5.6
0.81 d) 75 885 — — —
0.225 c) 18.6 995 — 2.1 3.7 3.1
0.235 c) 19.5 996 — 2.0 3.7 3.1
0.285 c) 24.4 998 — 2.5 4.3 3.5
0.434 c) 36.2 1002 — 2.4 6.2 5.7
0.36a) 33 1003 91 — — —
0.42 a) 34.7 1004 82 — — —
0.48 a) 38.5 1005 80 — — —
0.49 a) 40 1006 82 — —
0.59 a) 53 1012 90 — — —
1.51 130 1051 86 3.4 8.0 7.2
0.225 c) 15.9 1263 71 2.3 3.8 3.0
0.225 c) 15.9 1263 71 1.8 3.2 2.7
0.434 c) 29.6 1270 68 2.3 4.3 3.6
0.28 e) 23 1986 6.0 8.3 5.7
0.49 a) 29 1989 59 — — —
0.51 e) 30 1989 — 3.8 6.8 5.6
0.81 d) 47.5 1998 59 6.5 7.7 4.1
0.91 e) 66 2007 — 6.0 8.7 6.3
1.51 90 2019 60 — —

a) commercial foil.
b) sandwich target, fluorine as indicator, thickness determined from the shift 

of the (p, y) resonance at 660 keV.
c) sandwich target, aluminum as; indicator, thickness from the shift of the

(P, y) resonance at 986 keV.
<i) sandwich target, chlorine as indicator, thickness from the shift of the

(P, 7) resonance at 860 keV.
e) sandwich target, chlorine as indicator, thickness from the shift of the

(P, n) resonance at 1974 keV.
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Gold. Commercial gold foils have been used. As the pro­
duction of sandwich targets covered with gold did not succeed, 
sandwich targets covered with bismuth were used. The slopping 
power varies with Zt and thus a value of the stopping power 
found by means of a sandwich target covered with bismuth 
must be increased by 2°/0 when compared with the stopping 
power of gold. When the thickness of a sandwich target is found 
from the shift of a resonance curve this factor must also be 
taken into account. In the table the measured stopping powers

Table VI. Gold.

stopping 
sub­

stance

1

t 

thickness 

mg/cm2
2

shift

keV

3

E 
proton 
energy 

keV

4

•Sßi *Au
stopping 
powers 
keV/ 

mg/cm2

ß1
stau 

devi;)

keV

7

-O2 
dard 
tions

keV

8

O 
stragg­

ling 

keV

95 6

Au 0.45 a) 38.5 359 __ 1 85 _ _
Au 0.52 a) 42 360 — 81 — __ —
Bi 0.55b) 44 366 80 82 4.8 6.0 3.6
Bi 0.61c) 41.9 651 69 71 2.1 5.0 4.6
Bi 0.61c) 42.9 652 70 72 2.1 5.3 4.9
Bi 0.66c) 49.4 655 74 76 2.3 6.8 6.4
Bi 0.55 b) 38 679 — — 4.6 7.2 5.5
Bi 0.69d) 42.3 881 — : — 2.5 6.0 5.5
Bi 0.69 d) 43.3 881 — — 2.5 5.9 5.4
Au 0.45 a) 27 999 — i 60 — — —
Au 0.52 a) 30 1000 58 — — —
Au 0.51 a) 31 1001 — 61 — — —
Bi 0.61 c) 35.4 1004 — •— 2.2 5.8 5.4
Bi 0.66 c) 38.7 1005 — — 2.0 6.0 5.7
Bi 0.68 c) 39.4 1006 — — 2.2 6.1 5.7
Au 0.84 a) 49.5 1009 — 59 — —
Bi 0.61c) 29.6 1270 49 50 2.0 6.0 5.7
Bi 0.69d) 29 1988 42 43 5.8 7.6 5.0
Bi 0.69 d) 28.7 1988 42 43 4.8 6.5 4.4
Au 0.84 a) 34 1991 — 41 — — —

a) commercial foil.
b) sandwich target, lluorine as indicator, thickness determined from the shift 

of resonance at 660 keV.
c) sandwich target, aluminum as indicator, thickness determined from the 

shift of resonance at 986 keV.
d) sandwich target, chlorine as indicator, thickness determined from the shift 

of resonance at 860 keV.
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keV are

for bismuth are given in column 5, and in column 6 are given 
the two per cent higher values valid for the stopping power 
of gold.

The values found for the stopping power

plotted as a function of the proton energy in fig. 1. Also the 
residís obtained by Warshaw10) al lower energies are plotted on 
the figure. It is seen that, for each substance, the points can be 
connected by a smooth curve.

Discussion.
The energy loss per cm path is given by Bethf/s formula1 .

z/E 4 7rc4Z? __ . 2 mn2

is the velocity, 
is the number 
I the average

excitation potential of the stopping substance.
A relativistic treatment shows that another term has to be 

added to the logarithm. At the velocities used in the present 
investigation this term can be omitted. The formula (1) is only 
valid if the velocity of the incident particle is much higher than 
the velocity of the electrons of the stopping substance.

In a previous paper1) concerning the stopping power of solid 
beryllium, the formula (!) has been used in the form 

d.v nw2

Here, e and m are the electronic charge and mass, z> 
and the atomic number of the incident atom, N 
of atoms per cm3, Z2 is the atomic number and

<2' iOg

(2)

where S is the stopping power for unit thickness, E the proton 
energy, M the proton mass, and CK is a correction due to the 
strong binding of the /¿-electrons, which has been calculated by 
Betiie10) for the lightest elements.

The value of I was found to be equal to 64 + 5 eV, in good 
agreement with a theoretical estimate of A. Boiir12), who gives 
I to be about 60 eV. Recently, Bakker and Segrè13) and Mather 
and Segre14), using 340 MeV protons whose energies arc so high 
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that the CK-corrections may be omitted, found values of I very 
close lo 60 eV.

For the heavier substances, the velocities of the most firmly 
bound electrons may be comparable with or exceed the velocity 
of the incident particles. As no CA-corrections are available for 
the heavier elements and, moreover, corrections due to the L 
and M shells are also necessary, the formulas (1) and (2) no 
longer apply.

For such cases, N. Bohr13\ using a simplified atomic model, 
gives an approximate expression and linds that the specific 

1 _ « ,
energy loss is proportional to Z'^-v . This dependence on v is 
found to hold approximately in the present experiments, but the 
numerical value given by Bonn is about 1.5 times the experimental 
results.

Recently, Lindiiard and Sciiarff16) have calculated energy 
losses for lower velocities. By means of a statistical argument
they derive the quantity L (x) = (zl E • mv2/4 NZ2ei J R) as a 

common function of the variable x = Z2 1 
stances.

for heavier sub-

For higher velocities, Bloch1 has obtained the formula 
L (x) = log (2 mv2lZ2I0), where Zo is a constant.

In order to compare the measurements with these formulas, 
the stopping powers at 350, 650, 1000, 1500, and 2000 keV 
found from fig. 1 are given in table VII.

Table VII. Specific Stopping Power (keV/mg/cm2).

. Proton energy

Substance
350 650 1000 1500 2000 keV

Bervllium............................ 386 285 215 167 138
Mica .................................... 310 220 170 134 107
Aluminum.......................... 270 190 158 119 99
Copper ................................ 170 125 105 84 70
Silver.................................... 138 104 83 68 58
Gold .................................... 83 70 59 50 42

From these five values for each element (mica excluded) the 
experimental values of L(x) have been found and are plotted
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. 1 _ 1 I)

against .t2 = Z2 2 — on fig. 2. On this ligure, a straight line 
vo

through the origin would correspond to a specific stopping power

for the experimental points corresponding to the four heaviest 
elements.

The experimental points of beryllium do not fit with a straight 
line, because the velocities of the protons are so high that the 

formula of Bloch is valid. The valut1 of the Bloch constant
z2 

is lG^tz 1 eV in agreement with the results of B akker and Segrè13).
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Several authors have tried to lind an empirical formula for 
the variation of the stopping power with the atomic number Z. 
Braggs and Klemans19) assumed that the stopping power S was 

1
proportional to A2, where A is the mass number. Rausch v. 
Traubenberg18) adopted SZ2 2 = const, and Glasson20) found 

2 .
that SZ2 3 = const, gave the best fit.

The formula of Boiir15) and that of Lindhard and Scharff16) 
may be written

LO) = å-1-Z2“1-— (3)
yo

and
L(x) = k2-Z2~* (4)

fo

From the values of 7>(.r) used on fig. 2 and from corresponding 
values of Z and v, the constants Ay and k2 have been calculated 
for the five energies of the four heaviest elements whose points 
are lying on a straight line. From these twenty values of k\ and 
A2 the mean values are found to be 1.20 and 1.35 with mean 
errors 10 °/0 and 3 °/0, respectively. The value 1.35 is in agree­
ment with an estimate of Lindhard and Scharff21), who find

L(.r) = 1.36-æ* —0.016-æ*

where x — Z2~1 • u2/uq .
As is well known, the factor Z2 in the specific energy loss 

implies that the stopping of an a-particle is the same as that of 
a proton with an energy one quarter that of the a-particle. There­
fore, the stopping power for protons at 1.5 MeV can be compared 
with earlier measurements for 6 MeV a-particles by Marsden 
and Richardson, Geiger, Mano and, Rosenblum. The values 
quoted by Bethe and Livingston11) have been used. The 
values of the present investigation are, for all substances, 5—10 °/0 
lower than the average values of the four mentioned authors. It 
may be added that their results are obtained only relative to 
air, which demands an accurate knowledge of the stopping 
power of this substance. A general comparison of empirical ranges 
and specific energy loss is given in the paper of Lindhard and 
Scharff21), where it is found that the present results are not 
at variance with the recent accurate range curve in air by Bethe2").

Dan.Mat.Fys.Medd. 27, no.13. 2
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An extensive discussion of the fluctuations in the energy loss 
on a given path length zl/? has been given by Bohr13). It was 
shown by Bonn that for high velocities of the penetrating particle, 
where all electrons in the atoms contribute to the stopping, the 
average square of the fluctuations in energy loss is simply given by

D2 = 4 % Z2-e4-Z2-AM/?. (5)

Since the energy loss can be written

AE AZ.-N _ , .
a o = ~ -2—“ -L(x),A 1\ nw

where f (x) is the function shown in tig. 2, we may write, instead
of (3),

£2 _ in 2
E-AE ~ .\iIAx)’ (6)

where M is the proton mass.
For lower velocities of the particle, where only a part of the 

atomic electrons contribute to the energy loss, a reduction in 
straggling takes place. Here, we shall refer only to the calculations 
by Lindhard and Scharff21^ who find:

(7)

The two formulas (6) and (7) should be joined smoothly.
In order to compare 

the theoretical estimate,
V -Z—i V ■versus .r- = z2 - — in

»o

the measurements of the straggling with 
/ -Q2 V

the values of u = are plotted

fig. 3. The points are found from the

measured values of _Q, E and AE. The curves are drawn according
1 ! m to the value = 0.00055 and to the semi-empirical value of

L(æ) = 1.35 Z2 2— from equation (4).
vo

In the case of mica, an effective atomic number has been 
found by interpolation between the values of the stopping powers 
of beryllium and aluminum. A value of Z2 = 10.5 is used for 
mica.
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From the spread of the points corresponding to the homogen­
eous mica foils the uncertainty in the values of Q can be estimated 
to about 10°/0. For the other substances the spread is a little 
greater. This may be due to small inhomogeneities in the foils

and sandwich targets. For the two heaviest substances, the values 
are about 1.3 times those corresponding to formula (7).

The author (on leave from the Physical Institute, University 
of Aarhus, Denmark), wishes to thank Professor Niels Bohr for 
his continuous interest in this work and for the great hospitality 
at the Institute for Theoretical Physics in Copenhagen. More­
over, thanks are due the members of the Van de Graaff staff 
of this institute, cand. mag. K. J. Broström and mag. scient.

2*
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T. Huls, and to mag. scient. J. Lindhard and mag. scient. 
M. Scharff for valuable help and discussions. The Carlsberg 
Foundation and the Research Foundation of the University of 
Aarhus have supported the work financially.

After the completion of this paper, a communication has 
been received from Dr. S. A. Allison, Chicago, concerning some 
measurements of the stopping power, performed by Mr. David 
Kahn and to be published in the Physical Review. In case of the 
lightest and the heaviest elements, the agreement between this 
author’s and our results is good; however, for medium elements, 
Kahn has found the stopping power to be higher than the present 
results. The largest deviations (20 per cent) are found for Copper, 
and they arc much too large to be explained by impurities in 
the foils. The copper foils used in our investigation have been 
rolled or beaten, whereas Kahn’s foils were prepared by evap­
oration. Since the method of foil preparation might be significant 
in explaining the difference in the results, a few remarks about 
the inhomogeneity of the foils may be useful.

When a commercial foil is inserted in the beam, contributions 
to the broadening of the resonance curve arise from 1) the width 
of the resonance curve without foil, 2) the straggling, and 3) the 
inhomogeneity of the foil. The width of the resonance curve 
without foil and that of the curve with foil can be found in the 
usual way. The contribution of the straggling can be estimated 
from the present measurements. Assuming the deviations to be 
added geometrically a standard deviation of the inhomogeneity 
of the foil can be found. In case of the 0,50 mg/cm2 copper foil 
this quantity is 7 keV. The energy shift is found to 53 keV. The 
thickness is 0,50 i 0,065 mg/cm2, so that the inhomogeneity is 
13 per cent. All the commercial foils showed an inhomogeneity 
of this magnitude.

A further communication has been received from Dr. J. N. 
Cooper, Ohio Stale University, whose results for copper foils, 
which have been prepared by an electrolytical process, lie 
between those of Kahn and those of the present author.
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1. Introduction.

It is the aim of the present paper to discuss the information on 
the coupling in //-decay which can be gained from the allowed 

transitions. At the present stage of experimental information, it 
seems that the best determination of the coupling is achieved by 
comparing the experimental /"/-values with the calculated nuclear 
matrix elements. In the following, we consider the mirror tran­
sitions and a few other favoured transitions, since methods for 
estimating matrix elements for unfavoured transitions are more 
uncertain. The precise investigation of the shape of //-spectra and 
the angular correlation in //-decay (recoil experiments) is also 
valuable for the determination of the coupling and will be 
discussed in relation to the present considerations. Information 
may also be obtained from polarization experiments which have 
already been discussed in detail by de Groot and Tolhoek \

In the following, we shall consider an arbitrary mixture of 
the live linearly independent invariants in /^-theory (Table 1), 
which, for allowed transitions AI = f no, leads to the following 

//-spectrum1**) :

(B) nA (A
2 %3h7

F(Z,E)pE(Emax-E)2

(ô't+ S'a) 151 h+ (S3 + S¡) 15 er H zF2£7(9i9a|Sl|2+9394|S^|2)

= ^^(z,F)pF(Fmax-F)2

[<7f (1 T ^f/E) I S 1 |“+ 9~GT (1 bGTlE) I S^|2]

[9f| S112 +9gtI|2]’
*) In formula (1), we have omitted the pseudoscalar term which, according 

to its selection rules, contributes to allowed transitions only through higher order 
terms22).

(1)

1*
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where we have used the notation from ref. 1, with

*>F = &GT =
2_7£3£4

2 i 2 <73 + ^4

b =

2 i 29l + Í/2

y = J/1 -(«Z)2.

(la)

The cross terms g^2 and Qtffa arc the so-called Ficrz terms. 
They are in general assumed to vanish. In section 2, where we 
shall discuss the information on the coupling, which can be 
gained from experimental /’¿-values in combination with cal­
culated matrix elements, these terms are neglected. In section 3,

Table 1.

Invariant Coupling 
constant

Nuclear matrix 
element. Allowed 

transitions
Selection rules

Scalar ...................... 9i P Zl I = 0 no
Vector...................... 92

q

$1 d I = 0 no
10

Tensor...................... 93 A I _ 1
~ 11

no no 0 -> 0

S'cr
I
(0

Pseudovector.......... 9i A 1 no no 0 -> 0

Pseudoscalar.......... 9$ Ü A I = 0 yes

however, it will be shown how uncertain is the usual argument 
against the existence of cross terms, and a discussion of the 
influence of cross terms on the results obtained in section 2 will 
be given, together with a few remarks on the interpretation of 
angular correlation experiments in view of the possible existence 
of cross terms.
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2. Information from //-values and matrix elements.
If we neglect cross terms the total disintegration probability

is given by

or
B = |2+ælS^|2]’

where
2 ¿Win 2 gir

B Z2i2 \ 54 and .X 2 I 2
(Vf + OgtWc 9f+9gt

(2)

(2 a)

It is seen that the experimental /’¿-valne combined with cal­
culated matrix elements determines a straight line in a B-x dia­
gram for each allowed /^-transition. The common intersection 
point for such lines determines g2F and g2GT.

For mirror transitions, we can neglect the change in the radial 
wave functions and thus compute | \ 1 |2 and |\cr|2 from the 
angular wave functions alone. In this case, the Fermi matrix 
element is given by

S112 1 < JM' I ¿ Oí I JM> I2
Al' i

= |<J3/| V()(. |,AW>|2
(3)

where Qf changes the z’th neutron into a proton. We have specified 
the total angular momentum J and its z component 3/ only.

The Gamow-Teller matrix element is, correspondingly,

= XXI <JM’ 1Qt I j.v> I2 

Al' k i

= J(^1)I<J-^IN^Q'I-W I2
(4)

according to the general rules for matrix elements of vector com­
ponents2/

If the state of the mirror nuclei in question can be described 
in terms of a single particle outside a core, coupled to an 
angular momentum zero, one obtains
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2 1l<o|

w+l) 
.l/2 <^>J:-Ml2

2

3/2
<a/2J><X

J for J — / -X
J + 1
J + 1 for J=/ + 1/2

J

> (5)

where I is the orbital angular momentum of the odd particle.
In Table 2, we have listed the experimental /’/-values for all 

mirror transitions together with spins and magnetic moments for 
the daughter nuclei. In the table we have also listed the shell 
model configuration assignments for the particles outside closed 
configurations and the corresponding magnetic moments.

a) Closed shell ± 1 nuclei b.

It is generally believed that single-particle states are most 
purely realized for those mirror nuclei which have closed shells 
of 0, 2, 8, 20 protons and neutrons dz one nucleon. This assump­
tion is supported by the fact that the experimental magnetic 
moments generally agree rather well with those calculated from 
single-particle wave functions. In Table 2, under the heading 
closed shell i 1, we have listed the matrix elements for these 
transitions found from formula (5). Using these together with 
the /’/-values one obtains the B (,r)-lines in Fig. 1. These lines are 
inside the experimental errors consistent with a common inter­
section point of (Bo, .r0) = (2650 + 85, .50 -05), where the
errors are mean square deviations found from internal con­
sistency of the data. However, these errors should not be taken 
too literally and some remarks in this connection will be given 
later*).

*) In a paper by Langer and Moffat20), which came to our knowledge after 
the conclusion of this paper, a redetermination of the H3 /Lvalue is given. The 
result is ft = 1014 i 20, which is in clearcut disagreement with a common inter­
section point in Fig. 1. Langer’s value for En)ax = 17.95 ± .10 disagrees also with 
another recent value given by FIamilton, i. e. -Einax = 19.4 .4 keV19).
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X -------
Fig. 1. B (x) lines for closed shell ± one nucleon transitions. Mass numbers are 

indicated.

b) Other mirror transitions.
Also in other cases than those discussed under a) 

the shell model predicts closed configurations i one single 
nucleon (i.e. for mass numbers 11, 13, 19, 27, 29, 31, 33). In 
these cases, the matrix elements may also be calculated from 
formula (5).

For several particles outside closed configurations the /’/-value 
depends sensitively on the coupling scheme.

If one assumes that the even structures couple to zero angular 
momentum, as is often done in shell model calculations of mag-
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*) probably in strong admixture with d*, s1( which would make I \ 1 I2 and
12 12 I J I

Table 2. The 7tmax quoted are often taken from reaction data (ref. 1 
where the formulas of Feenbef

Transition ^max (MeV) t //-value spin
”exp 

daug 
ter

1 n -> p 0.782 ± 0.00115) 12.8m ± 2.5 1280 ± 250 1// 2 2.7

3 H -> lie 0.0191 ± 0.000514)18) 12.45y ± 0.2 1240 ± 120 1 //2 — 2.1

7 Be -> I.i 0.863 ± 0.00215) 52.9(/ ± 0.2 2240 ± 40 3 2 3.2

11 C -> B 0.958 ± 0.00315) 20.39"'± 0.06 3840 ± 70 3 / 2 2.6

13 N -> C 1.200 ± 0.00515) 10.1"' ± 0.1 4560 ± 100 1/ 2 0.7

15 0 N 1.683 ± 0.005u) 2.1"' ± 0.1 3800 ± 200 1 2 — 0.2

17 F -> O 1.745 ± 0.00616) 65s ± 2 2320 ± 100 5 /2 — 1.8
19 Ne -> F 2.234 ± 0.00516) 19.5 s ± 1.0 1970 ± 100 1 . 2 2.6

21 Na -> Ne 2.50 ± 0.0314) 22.8 s’ ± 0.5 3700 ± 200 (3 2) <0

23 Mg -> Na 3.073 ± 0.01016) 12.0 s ±0.2 4780 ± 150 3 2 2.2

25 Al -> Mg 7.3 s (7a) — 0.8

27 Si -> Al 3.48 ± 0.1017) 5.0's ± 0.4 3350 ± 600 ,2 3.6

29 P -> Si 3.60 ± 0.1514) 4.6 s ± 0.2 3510 ± 700 1 j — 0.5

31 S -> P 4.06 ± 0.1217) 3.1s ± 0.2 4020 ± 600 1//2 1.1

33 Cl -> S 4.43 ± 0.1317) 2.0 s ± 0.2 3800 ± 650 3 . 2 0.6

35 A-> Cl 4.4 ± 0.214) 1.90s ± 0.05 3420 ± 800 3 , 2 0.8:

37 K -> A 4.57 ± 0.1317) 1.2's ± 0.2 2520 ± 600

39 Ca -> K 5.13 ± 0.1517) 1.06s ± 0.03 3740 ± 500 3//2 0.3!

41 Sc -> Ca 4.9 ± 0.214) 0.87s ± 0.03 2430 ± 800

netic moments, etc., (he j - j coupling scheme leads to unique 
wave functions. The matrix elements are easily calculated using 
the formulae (3) and (4) together with the rides for matrix 
elements of sums of single-particle operators3^. The result is shown 
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id 16). The //-values are calculated numerically except lor Z<7, 
id Trigg18) have been used.

|2 smaller without altering /z

mfiguration AVheor.

closed
shell ± 1

j-j coupling 
even 

structure 0
T-multiplet semi-

empirical

IS1|’ IUI2 ISi|*|IS7l* IS 112 IS7I’ 1S112 IS4|!

s7. 2.79 1 3 1
3

S1/i — 1.91 1 3 1
3p3/j 3.79 1 / /4 5//12 1 0.98

s. 7, 3.03 * ‘ 1 121 /135

3.79 1 5 //3 1 0.45

0.64 1 1 ! 3 1 0.40
3

P'l, — 0.26 1 1 '/3 1 0.35

d‘l. — 1.91 1 7/! 5 1 1.37

4*» 2.79 1 3 1 2.59

(d7.)s/ - 1.14 0 0 1 I not 1 —
(d7«)’/ 2.89 0 0 1 J unique 1 0.16

4 -1.91 1 //9 / 45 1 0.28

(4)? , Vi 
.7i — 1.04 1 0.784

^5/12 4.79 1 5 1 0.35

s‘/i — 1.91 1 3 1 0.25
3

s‘/i 2.79 1 3 1 0.23

1.15 1 3// 5 1 0.19

d7. 0.13 11/' 4 3// 20 1 0.15

(4tf2,7i 0.27 1 121// 375

d’/i 1.15 1 / /4 3 / 20 1 —

(4>:; » 12 1.01 1 121,/ 375

d7i 0.13 1 3/s 1 0.39

— 1.91 1 9 // 7 1 —

in Table 2 under the heading “j—J coupling, even structure 0”. 
The //-values calculated from these numbers, using the .r0 
value given in a), are in very poor agreement with the experi­
mental //-values. This is not surprising since the wave functions 
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used are not consistent with the charge independence of nuclear 
forces.

In general, the wave function will depend on the nuclear 
forces. However, in some cases (i.e. mass number 7, 25, 35, 37), 
the wave functions may be uniquely constructed from the assump­
tion that the ground state has the lowest possible value of the 
total isotopic spin 71O\

The wave function for Li1, where J = 47 = 3/2 and T — 
= 1/2 is thus given by23)

where we have left out the antisymmetrization operator

a y/2>1/
M3/ 31 3
x 12/ 12 » /H1 ¿ Ak,1 X 

iJ)a/2,_ '1. PaK,aK I/-V 15
X

Pal„3
X

/, Pal„-
p

— 3li P3lt, 7:

1 1 X X P l/T X X P
r 15 Pau,3/.A„- 7. A., 7. 15 Palt,a 1 P'l/2 x 12f 7, A»,-7

where P means the permutation of all three particle coordi­
nates. For mass numbers 21 and 23, where / = 5/2, the wave 
functions are not uniquely determined from the assumption 
T — 1I1 — / 2-

If the total isotopic spin 7’ is a good quantum number, one 
can easily show that the Fermi matrix element for a transition 
between a state T, Tr and a state 7', 7- — 1 is given by6)

|\1|2 = ÇT+T;)(T-T:+l)ôrr. (8)

For mirror transitions, where 7' = 7 = 1/2 and 7’- — x/2, 
we get I \ 1 |2 = 1.

The Gamow-Teller matrix element may be calculated using 
explicit wave functions inserted in Eq. (4). The results arc listed 
in Table 2, under the heading “7-multiplet”, together with the 
matrix elements for the above mentioned cases, where we have 
to do with closed configurations 2t one particle. In Fig. 2, the 
corresponding P (.r) lines are plotted. The 130 ,r0 value from section 
a) is indicated by a cross. It is seen that the agreement with this 



Nr. 14 11

value of 13, X (or any other value) is very poor. However, it 
should be noted that the lines which deviate most from B0,x0 
correspond to transitions between nuclei for which the theoretical

X -------->
Fig. 2. B (x) lines for mirror transitions with unadjusted matrix elements. Mass 

numbers are indicated.

magnetic moments deviate essentially from the empirical ones. 
It thus seems interesting to try to find whether any simple cor­
relation exists between the /’/-values and the deviations of the 
magnetic moments from the Schmidt lines. Such correlations 
have actually been found by Trigg12) who evaluates the matrix 
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elements from an interpolation between the Schmidt lines and 
the Margenau-Wigner lines for the magnetic moments.

In the following, we shall try to give an argument for an 
evaluation of the Gamow-Teller matrix element which is essentially 
an interpolation between the two Schmidt lines.

If one assumes that the deviation of the magnetic moments 
from the Schmidt lines arises from an interaction between the 
odd particle and some other particles in the nucleus, which lake 
over part of the angular momentum, e.g., as in the model used 
by A. Boiir and B. Mottelson'\ one may write the magnetic 
moment

9 = 9s < sz >j: = J + 9i < >JZ = J + 9r < j. = J

= (9s — 9i) < > j. = j + 91J + (9r — 9i) < Rz >j: = j •

Here, J = s + Z + /? = j 4- B. s and / are the spin and orbital
angular momenta of the single particle, and R is the angular
momentum of the system of particles to which it is coupled. 
< y means average value and the p’s are the gyromagnetic 
ratios.

The success of the shell model in predicting spins of the 
light nuclei leads one to believe that =J is not very
different from that is = J is small compared with
As the factor (pfí — pz) is small also compared with (ps — p1), 
gR being perhaps of the order ]/2, one may in first order neglect 
the last term in (9). This result in fact also turns out if one uses 
the model by Aage Bohr .

For the Gamow-Teller matrix element, we get from (4)

(szy may be inserted from (9) after neglect of the last term and we 
thus get the following approximate formula

/ p —Pr/ r
\ 9s~91 '

For the Fermi matrix element we find from (8)

(10)
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Using the magnetic moments listed in Table 2, we can thus 
obtain the matrix elements listed under the heading “semi- 
empirical”. The results are plotted in Fig. 3. The full-drawn lines

Fig. 3. B (x) lines for mirror transitions with adjusted matrix elements and for 
He6 and O14 decay. Mass numbers are indicated.

---------- closed shell ± 1 transitions.
— other mirror transitions.

-— • — He6 and O14 decay.

are essentially the same transitions as those plotted in Fig. 2. The 
dotted lines are those transitions which were used in Fig. 1 for 
the determination of 7i0, a:0. The use of formula (10) instead of
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(5) has changed these lines only by small amounts. The semi- 
empirical method does not work, however, in the case of the 
triton decay ( | | > 1/2) where we have used the value 3f).

The deviations of the full-drawn lines from the B0,x0 
value are, in several cases, larger than the experimental un­
certainty. We have tried to evaluate the magnitude of the term 
(gR — gi)<Rz>j. = j which would be necessary to explain this 
deviation. It turns out that | gR — | 1/2 and | < Rzyj = j | ± 1/2
will suffice to explain the deviations in all cases. One might thus 
hope that a theory which in detail explains the magnetic moments 
will at the same time explain the matrix elements for mirror 
transitions.

c) Even-A transitions and unfavoured transitions.
Among the allowed even-A transitions only those which are 

of the type 0 -> 0 no are very simple. For transitions of this 
type, the Gamow-Teller matrix elements vanish. The Fermi 
matrix element may be calculated from formula (8) which is 
based on the assumption of charge independence of nuclear 
forces only. Until now, two cases of 0 -> 0 no transitions are 
known with some certainly, namely C10 —B10* and 014->iV14*. 
The experimental data are listed in Table 3.

Table 3.

Decay Unax (WeV) t Branching 
ratio //-value 1 .\ 1 I2 l( I21 ) CT 1

C10-> B10* 1.15 ±0.10 19.1s ± 0.8 0.021 ± 0.006 6000 + 3000 2 0
O14 -> N14* 1.8 ± 0.1 76.5s ± 0.2 1 3300 ± 900 2 0
He6-» Li6 3.50 ± 0.05 0.823s ± 0.013 1 815 ± 70 0 6

The 014 decay has been used by Blatt9) to determine the 
coupling in ß-deeay, but, with the present experimental uncer­
tainty, both this transition and the C10 decay are consistent with 
our values for and .r0.

f) A more detailed estimation of the Gamow-Teller matrix element has been 
given recently by Blatt8' who finds |ji"n|2 2.84. As mentioned by Blatt,
this result is rather uncertain. The value 3 which we have used is, according to 
Blatt, an upper limit.
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Also the decay ol’ He6, the experimental data of which are 
listed in Table 3, has been used for the determination of the 
coupling10). Il seems, however, that the Gamow-’feller matrix 
element for this transition is rather ambiguous (the Fermi matrix 
element is certainly 0). The matrix element obtained by using 
j—j coupling is definitely too small. The matrix element quoted 
in the table is obtained by L—S coupling. Although this value is 
probably an upper limit; we have used it for the Z?(.v) line for 
He6 in Fig. 3.

A few other even-A transitions with “superallowed” /’/-values 
exist, but matrix elements for these arc even more uncertain Ilian 
for the He6 decay.

For all other allowed transitions the /’/-value is a factor 50— 
100 larger than the //-value for mirror transitions; they are 
so-called unfavoured transitions. The “unfavoured factor” may 
partly be understood by noting that, in all other cases than the 
mirror transitions, the quantum number T is different for the 
ground states of mother and daughter nuclei, i.c. the Fermi 
matrix element vanishes6). This will, however, only explain a 
part of the unfavoured factor and probably one has to take into 
account other differences between the nuclei than the states for 
the odd nucleons').

3. Cross fernis11).
Until now we have assumed that the products g^g^ an(f g .Eli 

vanish. In this section, we shall investigate in how far this assump­
tion can be verified experimentally.

a) Spectrum shape.

As seen from Eq. (1), the cross terms are energy dependent, 
i.e. they will show up in a ^-spectrum. If we consider a Kurie plot

K = |/ñá)7é = c(B--BTr+^. au

the most important effect of the cross term b/E for low and medium 
maximum energies is a change of the slope of the plot. This
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change is, however, not detected since it is equivalent to a change 
of C. What remains is a curvature which appears as a small 
deviation from a straight line the slope of which is adjusted to 
the experimental points.

4

Fig. 4. Kurie plot with cross terms compared with straight line adjusted to the 
points Ey and E2.

In Fig. 4 we have illustrated an example where the straight 
line is adjusted to the curved Kurie plot11* in the points Et and 
E2. The maximum deviation Am will appear at a point Em & \/ EXE2. 
To illustrate the magnitude of the curvature, we have plotted in
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max

Fig. 5 Am/Km as a function of the maximum energy for dif­
ferent values of b in the case where E1 = 1.2 and E2 — Emax— 0.2.

It is seen from Fig. 5 that even large values of b (— 1 < b < 1 ) 
give only small deviations and that, consequently, it is difficult 
to obtain narrow limits for b. In fact, an analysis of the published

Fig. 5. Maximum deviation AmIKm of curved Kurie plot from straight line for 
different values of cross terms b.

/5-spectra indicates that, in no case, ô-values as large as 0.4 can 
be excluded. In such experimental comparison it should, of 
course, be remembered that b has opposite sign for positon and 
negaton emission*).

*) Recently, Mahmoud and Konopinski21' have given a careful analysis of 
the shapes of some allowed ^-spectra in order to set a limit on the cross terms. 
Their result | b | < 0.2 is based on a statistical treatment of all the experimental 
data.

Dan.Mat.Fys.Medd. 27, no. 14. o
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Furthermore, it should be noted that experimenters usually 
apply the straightness of the Kurie plot as a control on their 
spectrometers.

The information about the coupling constants which can be 
obtained from a determination of b is contained in Eq. (la). 
Since b depends on the nuclear matrix elements, it is of 
course most valuable to determine b in cases where the ratio 
I \ 1 |2/1 \ (7 |2 is known. As an example, we have in Fig. 7 
plotted the dependence of b on the ratio (fa/g3 in the simple case 
where \ 1 I2 is known to vanish.

b) /¿-values.
The cross terms will also have some influence on the /'/-values 

as the new /’-value will be given by

/’= A(i +ôô),

where f0 is the usual Fermi integral and

<5 = \F(Z,E)p(Em,x-Ey-dElf„.

Fig. 6. Area in by, bar plane which is allowed according to the assumption of 
consistent B (.r) lines for closed shell A 1 transitions.

To see what influence this will have on our considerations 
in section 2, we derive from Eq. (1) that

1 777^

? = 2 rftV In 2 T b1''^ I $ 1 I“+ 9gt ( 1 T ^gt^) I S ° '



Nr. 14 19

With the notation (2 a) we get

B = f„ t [(1 - x) (1 T M) I ü 1 P + *(« bBTS) IS? N

which shows that (he B (.r) lines will still be straight lines, only 
they will be shifted by an amount depending on bp and bGT. 
This now provides us with another tool for the determination 
of the cross terms. If we assume that the B(.r) lines for the simple 
closed shell i 1 nuclei have to pass through a common point 
within their experimental uncertainty, we can estimate limits for 
bF and bGT. In Fig. 6, we have indicated the area in the bF, bGT 
plane which is allowed according to this condition.

c) Recoil experiments.

If cross terms exist, the angular correlation between /^-particle 
and neutrino for allowed transitions is given by1)

Fig. 7. The experimental angular correlation parameter a and the cross term para­
meter bo- for allowed GT transitions.

2*
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where
(g'i — g'ö 1 I2 — Vs (f/s — f/s) 1 I2

ids 1|2 + í7gt|^|2

and b is given in (la).
In angular correlation experiments, one usually determines 

the ratio between the cosine-dependent term and the constant 
term

a = «/(l + b/E),

where E is the energy of those electrons for which the angular 
correlation is measured.

To illustrate what information on the coupling constants can 
be obtained from a determination of a, we have plotted in Fig. 7 a 
a as a function of g4/g3 for E = 2 in the simple case where 
I 1 I2 is known to vanish. Il is seen that a determination of a 
in general does not permit a unique determination of g4/g3. It 
thus seems valuable to combine angular correlation experiments 
with ß-spectroscopic measurements, especially in those cases 
where the ratio | \ 1 |2/| \ a |2 can be estimated.

4. Sit nun ary.
In the present paper, an investigation of nuclear matrix 

elements has been combined with the experimental ft-values in 
order to determine the coupling constants for Fermi- and Gamow- 
Teller interaction in /?-decay. It is shown that the mirror transitions 
between nuclei with closed shells i one nucleon are consistent 
with approximately equal amounts of the two couplings. Within 
the limits of error, this result agrees with similar calculations 
carried out by Trigg12), Bouchez and Nataf13), and Blatt9). 
For the remaining mirror transitions, the matrix elements derived 
from the shell model are not consistent with this result. However, 
as pointed out by Trigg12), considerable improvement can be 
obtained by adjusting the wave functions to the observed magnetic 
moments. In the present paper, it is shown that, on the assump­
tion of an interaction between the single particle and the nuclear 
core, an approximate correlation exists between the Gamow-Teller 
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matrix elements and the magnetic moments of the nuclei involved 
in the transitions. The results for the adjusted matrix elements 
thus obtained are, within the uncertainties and the approximation, 
in agreement with the above mentioned coupling constants.

The possible existence of cross terms in the /3-dccay coupling 
is also discussed. It is shown that the present experimental data 
do not provide very narrow limits for these terms, and further 
experiments on this matter are therefore desirable.

We wish to thank Professor Niels Bonn for his interest in 
our work and we are indebted to Mr. Aage Boiik and Dr. Ben 
Mottelson for many valuable discussions and suggestions.
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§ 1. Introduction.
n the discussion of the energy loss by swift charged particles 
passing through matter one may conveniently distinguish 

between two extreme cases. When a penetrating particle has a 
sufficiently high charge, or low velocity, it will carry electrons 
which to some extent will screen the field of the particle. The 
problem of its energy loss is then quite involved, even though it 
may be treated essentially on classical mechanics. But as soon 
as the velocity of the particle is high compared with the orbital 
velocity of an electron carried by it in the ground state, the energy 
loss can be computed rather accurately using a quantum mechan­
ical perturbation treatment. In the present paper we shall be 
concerned with the latter simple case, and in particular with the 
slowing down of protons and a-particles. We shall try to build 
up a simple and consistent picture of the atomic processes dis­
played in stopping problems for atoms containing many electrons. 
But it may be useful to make first a few remarks regarding the 
different treatments and points of view on the subject.

We consider then the energy loss suffered by a heavy particle 
of velocity v and charge ze, passing through a substance of 
atomic number Z and with a density N atoms per unit volume. 
As long as v remains large compared with the velocity of the 
more strongly bound electrons in the substance, the average 
specific energy loss of the particle is with good approximation 
given by the general formula of Betiie (Bethe (1930), Bethe 
and Livingston (1937)) 

dR mn2
■\Z log

2zmr
I (1)

where I is a constant characteristic of the substance, often denoted 
as the average excitation potential. This constant was by Bethe 
found to be determined by

1*
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where fik is the atomic oscillator strength corresponding to the 
transition (/, k) with frequency coik; a similar formula applies 
when chemical bindings come into play. The equation (1) holds 
for non-relativistic velocities. For very fast particles the rela­
tivistic term (—log(l —- n2/c2) — a2/c2) is to be added to the 
logarithm in (1). It is well known that half of this term arises 
from close collisions with the electrons in the substance, while 
the other half is due to distant collisions. It should be mentioned 
that the relativistic formula is not always quoted correctly in the 
literature, and also that some authors introduce a potential I 
defined in a manner different from that used here. A correction 
to the above relativistic term, depending on the density of the 
material, was introduced by Fermi (1940). We shall not be con­
cerned with relativistic cases where this effect is important.

In connection with (1) it is worth recalling that for an analysis 
of stopping problems it can be of advantage to use a simple 
idealized picture of the energy transfer. The collision may then 
be described by a classical impact parameter, p, and a collision 
time, T — p/v. For a particle of high velocity the collisions can 
be divided into the close and the distant ones. In the violent 
close collisions the binding and mutual interaction of the electrons 
will not be important. In the more distant collisions the average 
energy transfer is equivalent to that in free classical impacts. It 
is now decisive for the magnitude of the total energy loss by the 
particle that the energy transfer becomes negligible for collision 
frequencies, 1/r = u/p, less than the adiabatic frequency co char­
acterizing the dynamical properties of the atomic system. The 
value of co is connected with I by the relation / — hco. We shall 
repeatedly make use of the above simple concepts.

The energy loss suffered by electrons passing through matter 
cannot, for several reasons, be contained in formulae of type 
of (1). In the following we shall treat only heavier particles, but 
the estimates of the average excitation potentials, which involve 
only distant collisions for fast penetrating particles, can of course 
be used as well in the description of the stopping of electrons.

In Bethe’s deduction I is determined by the transition fre­
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quencies and corresponding oscillator strengths in the atomic 
system. A direct calculation of I on these lines is simple in the 
case of hydrogen, but becomes complicated for substances of 
high atomic number. A considerable simplification of the pro­
blem for heavier substances was achieved by Bloch (1933), 
when he applied the Thomas-Fermi model of the atom. Making 
some simplifying approximations in the Thomas-Fermi model 
when extending it to dynamical problems, Bloch found that the 
average excitation potential I = I(Z} in Bethe’s formula (1) 
could be written as

Z = Io-Z, (2)

Io being a constant independent of Z. Bloch did not calculate 
the value of Io; in fact, it seemed difficult to compute this quantity 
from his model with sufficient accuracy, an empirical deter­
mination being preferable. A calculation of /0 was carried through 
later by Jensen (1937), but with a picture of the atom too sim­
plified to allow quantitative comparisons.

The numerous data on the slowing-down of protons and 
a-particles in substances of medium and high atomic number 
have shown that Bloch’s relation (2) is rather well satisfied for 
sufficiently high velocities v. The values of Io = I/Z found em­
pirically are about 10 eV, with only slight variations between the 
different elements.

When the velocity of the particle becomes comparable with 
those of the more strongly bound electrons in the substance— 
as is usually the case for natural ct-rays—the energy loss is no 
longer well represented by the constant potential in equations 
(2) or (1). The potential will then vary with velocity because the 
logarithmic expressions in (1') apply only when the arguments 
are large. Bethe has here introduced corrections of the contri­
butions from the electrons in the K-shell (Bethe and Living­
ston (1937)). In the following we shall be particularly interested 
in this velocity region, and also in the stopping for still lower 
velocities, where N. Bohr (1948) has accounted in a simple 
manner for the empirical i»3-relation for the range of ct-rays.

It is the aim of this paper to bring out general relationships, 
embracing results like that of Blocii (2). We shall rely on sim­
plified descriptions of atoms, where the main features of atomic 
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dynamics are most easily recognized. It may be that more than 
due emphasis is given to the comparison with a free electron 
gas and the description based on polarization. But we found this 
way of approach preferable; although less common it is perhaps 
the simplest one.

In order to get a first insight into the phenomena we shall, in 
§ 2, try to arrive at a simple qualitative picture of the stopping 
in heavier substances, and in § 3 discuss in how far this picture 
can be said to agree with the data. These questions were treated 
briefly in a recent note (Lindhard and Scharff (1952)). A more 
detailed discussion of different kinds of approach employed in 
atomic dynamics is attempted in § 4. We shall endeavour to show 
the significance of the revolution frequencies of the electrons in 
these problems, and their connection with the adiabatic frequency. 
Moreover, the electronic interaction appearing in the polarization 
is found to be of decisive influence for the dynamics of heavier 
atoms. A formula with rather general applicability is derived for 
the energy loss in matter, and more quantitative results are then 
obtained in §5. Among the questions there to be treated are the 
magnitude of the polarization effects and the reduction in energy 
loss for low velocities of the particle. Finally, the straggling 
phenomena are discussed briefly in § 6 on similar lines.

§ 2. Stopping by Heavier Substances in a 
Qualitative Description.

As well known the statistical description of Thomas and Fermi 
gives a surprisingly good account of the atomic structure and 
binding, in particular for electrons in the intermediate region of 
an atom. In the problem of the energy loss of a particle penetrating 
through atomic systems this method will seem especially well 
suited, because the atomic electrons all give comparable con­
tributions to the stopping, so that the total effect is due mainly 
to the majority of the electrons with medium binding. Neither 
the individual characteristics of the atoms or molecules, deter­
mined by the outer electrons, nor the precise magnitude of the 
binding of the innermost electrons will be of importance in first 
approximation.

In the Thomas-Fermi model the electronic densitv distri-
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butions for different atoms are similar, and the common unit of 
length is proportional to Z—1/3. The charge density eg is therefore 
proportional to Z2, and the total binding energy of the atom 
behaves as Z7/3. Since, thus, the binding per electron is pro­
portional to Z4/3 the electrons may be said to have velocities pro­
portional to Z2 .

In the present connection we are interested in the dynamics 
rather than the statics of the atom. When the dynamical treat­
ment is based on the Thomas-Fermi model the motions can be 
described on classical mechanics, only with due regard to the 
exclusion principle in the initial state of the system. Suppose 
now that a small disturbance is set up in the atom. The develop­
ment in time of this disturbance can be governed by only two 
kinds of frequencies. Of these, one is the frequency co0 = 
(4 Jt e2 QIm)1/2, determined by the densities of mass and charge 
and corresponding to the classical resonance frequency of an 
extended gas of charged particles. For heavy atoms the spectrum 
of classical resonance frequencies cd0, behaving as @1/2, is thus 
contained in a single distribution with a scale proportional to Z. 
The second kind of frequencies can be pictured in the following 
manner. The disturbance will be propagated and at the same 
time damped with certain velocities, and since all velocities in 
the static model behave as Z2/3 the velocities of propagation and 
damping must show this dependence on the atomic number. Now, 
the linear dimensions of the system are proportional to Z~1/3, 
and accordingly the frequencies of damping and revolution are 
proportional to Z. Thus, we have found that all frequencies 
entering in the dynamical description show the same dependence 
on the atomic number. This result was first obtained by Blocii 
(1933) on the basis of his simplified hydrodynamical model of 
atomic dynamics.

The general behaviour of the frequencies in the atom may 
also be accounted for by noting that the unit of time in the 
Thomas-Fermi model is proportional to Z—1. It follows that in a 
perturbation treatment, i. e. in the approximation of linear field 
equations, where one can speak of a set of proper frequencies of 
the system, these frequencies must behave as Z.

As to the approximations involved in this picture of atomic 
dynamics, the use of a perturbation treatment was just a charac- 
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teristic of the stopping problem for fast particles of low charge. 
Moreover, the description by a classical approximation is ap­
propriate here, partly because we are concerned with a calculation 
of the screening in distant collisions, where the classical treat­
ment gives the same average result as the quantum mechanical 
calculations, and partly since we have described the atom by 
the semi-classical Thomas-Fermi model.

From the above results we can obtain a qualitative picture 
of the stopping of a heavy particle, with velocity z? and charge ze. 
One may for instance argue as follows. The specific energy loss 
will always be of the same form as equation (1), i.e. equal to 
(4 jtz2e4ZN/mv2) times a dimensionless function, L, independent 
of the charge ze of the particle. This function is in Bethe’s 
formula an average over the atomic system of quantities of the 
characteristic logarithmic type. The logarithms depend on the 
maximum energy transfer 2zz?n2—or the corresponding fre­
quency ct>max = 2zz?n2//z— and on the transition frequencies in 
the atomic system. In the semi-classical description of Thomas 
and Fehmi we must thus expect that the only frequencies which 
can enter in the function L are comax and the atomic frequencies 
proportional to Z, even when L is no longer of the logarithmic 
type. The dimensionless function L will therefore depend on Z 
and v only through the ratio of the frequencies, proportional to 
Z/u2, and we can write 

(3)

where the so far unspecified function L(.r)is determined by the 
distribution of the frequencies in the atom. In order to obtain 
a suitable dimensionless parameter in the function L in (3) we 
have introduced = e2/h as a measure for the velocities. The 
equation (3), as it stands, is applicable only for non-relativistic 
velocities, and normally the familiar term (log (1 ~u2lc2) + z>2/c2) 
must be added on the left hand side of (3) if u is comparable 
with c.

It is clear from the above deduction that, if the atomic fre­
quencies entering in the description were, for instance, the binding 
frequencies of the electrons, proportional to Z4/3, the function L 
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would instead depend on the ratio Zil3/ir. But, as we have seen, 
the dynamic frequencies in the Thomas-Fermi atom are not of 
this kind. A quite different question is the limitations of the 
Thomas-Fermi description, mentioned in the beginning of this 
paragraph. In the first place, due to the individual variations in 
the binding of the outermost electrons in the atom, one will expect 
small fluctuations from one element to another, but on the average 
the formula should remain valid. We shall return to the problem 
of these fluctuations in § 5. In the second place, the binding of 
the innermost electrons is not well accounted for by the Thomas- 
Fermi model, and the corresponding frequencies do not behave 
as Z. While the most loosely bound electrons primarily give rise 
to fluctuations, the presence of the strongly bound electrons imply 
instead systematic deviations from the dependence of L on the 
single variable v^/vqZ. Still, since the individual contributions and 
the number of these electrons both are small, it is to be expected 
that they will not have an appreciable influence on the variation 
of the total stopping with Z and n.

A few simple results may be derived immediately from 
equation (3). If the velocity v of the particle is large compared 
with the electronic velocities in the atom, the dependence of the 
function L on u must be approximately as log (n2), as in Bethe’s 
formula (1). Equation (3) then leads to Bloch’s formula (2), 
again with an undetermined value of the constant Io. In $5 will 
be given an approximate estimate of this constant. It may here 
be noted that the mentioned replacement of Z/z/2 by Z4/3/zr in L 
would in this case give a formula deduced by Sommerfeld 
(1932), where Z in Bloch’s formula (2) is replaced by Z4/3, at 
variance with the measured stopping.

For low velocities of the particle, or values of v comparable 
with the velocities of the majority of the electrons in the atom, 
the more strongly bound electrons no longer contribute appreciably 
to the stopping, and the function L will not behave as in the Bloch 
formula. In the lower part of this region the specific energy loss 
is approximately proportional to 1 'n, corresponding to Geigér’s 
formula for the range of a-rays. With this dependence on v it 
follows from (3) that the energy loss is proportional to Z1/2, in 
fair agreement with the classical rule according to which the 
stopping behaves as A1/2. We shall presently give a more quanti- 
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tative discussion of the region of low velocities on the basis of 
recent measurements.

The above-mentioned reduction in the contribution of the 
strongly bound electrons has been discussed by Bethe from a 
somewhat different point of view. For velocities comparable with 
the electron velocities in the K-shell Betiie estimates the decrease 
in stopping due to these electrons (Bethe and Livingston (1937), 
Brown (1950), Walske (1952)). This correction sets in at quite 
high velocities of the particle, and changes initially only rather 
slowly with velocity. It will therefore seem that a separate cor­
rection for the K-shell is a somewhat doubtful procedure, and 
it is of course not in line with the statistical treatment of the atom. 
Although further corrections for the L-shell and even higher 
states can be made, such an attack becomes highly complicated.

For extremely low velocities, as in the case of canal rays, 
the present description no longer applies. This is partly because 
there is a high probability that the particle will carry an electron 
when its velocity is of the order of that of an electron bound to 
it in the ground state, and partly because the stopping is then 
mainly due to the outermost electrons which do not follow the 
statistical model. The deviations set in for values of x somewhat 
lower than 1, depending on the substance and the charge of the 
penetrating particle. For values of x of the order z2/Z the de­
viations are expected to be considerable.

Instead of the above formulation where L in (3) is a function 
only of v2/Z, one might say that the specific energy loss itself is 
a function of v2/Z, because dEfdR differs from L only by a factor 
proportional to Z/z;2. This formulation can be useful, but it is no 
longer valid when relativistic corrections set in. Moreover, if one 
wants to study the empirical justification of a picture of the kind 
suggested here, it is a better criterion to plot L, which function will 
show more clearly the presence of small deviations from the picture.

As to the range of the particle we may similarly write, for 
not too high energies, 

(4)

where R is the range, M the mass of the particle, and a0 the radius 
of the hydrogen atom. The function /‘(.t) is connected with L(rc)by
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(5)

For higher velocities the relativistic corrections of magnitude 
about n2/c2 destroy the validity of (4); these corrections are pri­
marily due to the kinetic energy being no longer ^Mv2. One might 
then attempt a more precise formulation in analogy to (3), but 
unfortunately this is not feasible on the same simple lines.

The formula (4) applies strictly for range differences only. The 
above-mentioned deviations from the description of stopping for 
extremely low velocities imply the presence of very small dif­
ferences in range, depending on the substance and the particle. 
These differences we shall call differences in excess range, and 
their values will be found in § 3.

§ 3. Comparison with Experiments.
Let us compare the formula (3) with experimental data 

available at present. In Fig. 1 we have plotted L(x) as a function 
of the variable x = (d/d0)2-Z—1, using a number of absolute 
measurements of the stopping of protons of energy between 
1—200 keV and 340 MeV, for metals ranging from uranium to 
the extreme case of beryllium. The values of L(.r) are obtained 
by introducing the measured stopping on the left hand side of (3), 
and afterwards adding the relativistic correction if the velocity 
is high. As mentioned no correction should be made for the 
K-shell. The points on the figure are based on measurements of 
specific energy loss of protons, performed by the following authors : 
Bakker and Segrè (1951), Mather and Segrè (1951), 340 MeV. 
Sachs and Richardson (1951), 18 MeV. Warshaw (1949), 100-300 
keV. Madsen (1953), 0.2-2 MeV. See, further, the note on page 14.

The points in Fig. 1 appear to give a rather well-defined curve. 
The fluctuations around the average are small, as was to be 
expected. In the present connection it is more significant that the 
different groups of elements, arranged according to atomic num­
ber, do not show a tendency to separate out into consecutive cur­
ves. The points for Be should of course not properly be included 
in this comparison based on the statistical model.
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tistical treatment. The points represent experimental values, for metals, of the
quantity L given by equ. (3). The abscissa is the variable x, in a logarithmic 
scale. The clotted straight line gives the inclination in Bloch’s asymptotic formula, 

and it corresponds to Io = 10 eV.

In order to cover a wide range of .r-valucs we have used 
a logarithmic scale for the abscissa in Fig. 1. This has the 
advantage that points with the same value of Io = I/Z lie on 
a straight line. The common inclination of such lines is given 
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by the dotted line on the figure, which corresponds to Io — 10 eV. 
For high valnes of x, i.e. high velocities, it is seen that Bloch’s 
formula with constant Io has approximate validity. The value of 
Io thus obtained is about 10 eV, determined essentially by the 
measurements of Bakker and Segrè, and of Mather and Segrè. 
For decreasing values of x the curve dips gradually towards

Fig. 2. Comparison between experiments according to the statistical treatment, 
for low values of x = v2¡Zvl. As abscissa is used x1/2. The curve represents formula 

(11), to be discussed in §5.

higher values of I -- Z(p). When x is about 5 a maximum in I 
is reached, and this potential is here almost twice as large as 
for high velocities. Eventually, for x decreasing below 5, the 
value of I decreases again and passes through the original high 
velocity value when x is of the order 0.5. It should be mentioned 
here that for ¿r-values between 1 and 5 the curve shown on the 
figure lies somewhat below the semi-empirical curve for air given 
by Bethe and Livingston (1937).

If one measures the specific energy loss in matter for a particle 
of a certain velocity it is possible to find the limiting ionization 
potential at high velocities by multiplying the measured values 
of I by the proper factor corresponding to the variation of the 
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potential along the curve in Fig. 1. It is difficult to estimate the 
accuracy of such a semi-empirical procedure. A correction of 
this kind has been suggested by Sachs and Richardson (1951), 
whose measurements cover a considerable part of the curve 
in Fig. 1. These authors, however, did not emphasize that for 
lower velocities the correction reaches a maximum, whereupon 
it decreases again.

The behaviour of the curve for low values of x is more 
apparent from Fig. 2, covering the interval 0.2 < x < 20. As 
abscissa is used x1 , because a u3-law for the range in this repre­
sentation gives a straight line through the origin. In the first 
approximation the points on the figure may be said to correspond 
to this law, but the resulting curve is curved slightly downwards. 
This is particularly so for higher x-values. It should be noted 
that the figure includes quite high particle energies, e.g. 18 MeV 
protons in Ag, and that the p3-law has been suggested only for 
considerably lower velocities.

The approximate result that the present parameter x even for 
low velocities collects the experimental points on a single curve 
was expected from the qualitative considerations in § 2, but its 
significance will be seen more directly in the discussion in § 5. 
It is here interesting that, if one uses instead of x the previously 
mentioned parameter n2/Z43, the measurements will separate 
out into a succession of curves for the different separate 
elements.

When this paper had been sent to press it came to our notice that 
Kahn in Chicago has investigated the specific energy loss by protons 
in Be, Al, mica, Cu, and Au, in the energy interval 0.5-1.3 MeV. His 
measurements for Be, mica, and Au agree well with Madsen (1953), 
whereas for Al and Cu Kahn finds values about 10 to 20 °/0 higher than 
those of Madsen, the deviations being largest for Cu. The reason for 
the discrepancies is, as yet, not known. Further, measurements of the 
stopping in Cu have been made by Cooper in Ohio, whose results are 
about 5 °/0 lower than those of Kahn. The x-values involved in the 
new measurements are 0.6-2 for Cu and 14 for Al. Since, in the region 
around x = 1 on Figs. 1 and 2, the points for Au and Ag are somewhat 
higher than those for Al and Cu, a possible increase in the latter values 
should not impair the description by a single function depending only 
on x. However, for x < 6 the deviation from the straight Bloch line 
on Fig. 1 would be less, and the curve would lie closer to that for air. 
The maximum deviation from the Bloch line would not be changed 
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essentially, but instead occur at a somewhat higher value of x (x ~ 10). 
The above-mentioned discrepancies may serve to emphasize the uncer­
tainties prevailing in present determinations of energy loss, excepting, 
perhaps, energy loss in air and in photographic plates.

The measurements shown in Figs. 1 and 2 refer only to the 
specific energy loss in metals. As regards other substances—and 
in particular gases—the evidence is mostly relative measurements 
of ranges, or differences in range. The range observations even 
have the advantage of being more accurate than direct measure­
ments of the specific energy loss. These two cannot immediately 
be compared, but instead a separate discussion of the ranges 
may be made. We shall therefore attempt to plot ranges as a 
function of the single variable x, in the manner prescribed by 
equation (4). As mentioned in § 2, this method of comparing 
ranges can only be applied in the non-relativistic region. There 
is another difference from the treatment of specific energy loss, 
because in the very last part of the range the stopping will no 
longer show the common behaviour assumed above. Even though 
the resulting range deviations are small they must be taken into 
account in an accurate representation of the data.

The procedure used in obtaining a range curve is now the 
following. The measured ranges in mg/cm2 are according to 
equation (4) multiplied by the factor (l/AZ)-(z2Mp/M), where 
-Vp is the mass of the proton, and M that of the particle. This 
will, apart from a constant factor, correspond to finding the 
quantity /’ on the right side of equation (4). As a first approximation 
the results are plotted as a function of the variable x. One finds 
roughly a common curve, but the sets of points for the separate 
elements will not precisely follow the trend of the common curve. 
There will be deviations which are significant only for the 
shortest range values. We then try to subtract a small individual 
amount—call it the excess range—from the ranges in order to 
obtain a curve on which all the measurements are collected. This 
amount will depend both on the substance and on the charge 
of the particle. The excess ranges are then so far determined 
apart from a common additive constant, the fixation of which 
is given below. The resulting points are shown in Fig. 3 in a 
double logarithmic scale, together with the values of the excess 
ranges. We have employed the extensive measurements by
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Fig. 3. Ranges plotted according to the statistical formula (4). The ordinate gives, 
in a logarithmic scale, ranges in mg, cm2 multiplied by (1/AZ)• (z2Jf/,/Ajf). The 
ranges used are experimental ranges minus the excess ranges (see text). The full­

line curve was obtained by integration of the averaged curve in Fig. 1.

Mano (1934) of ranges of natural a-rays in He, air, Ne and A. 
Further are used the accurate semi-empirical range curves for 
a-particles and protons in air by Bethe (1950)1. Included on the

1 Recent measurements by Reynolds et al. (cf. Bull. Am. Phys. Soc. 27, 
No. 6 (1952)) with protons of low energies appear to deviate somewhat from the 
curve by Bethe. For higher energies, 2—8 MeV protons, Burcham (1953) has 
obtained results in good agreement with Bethe. 



Nr. 15 17

figure are moreover the measurements by Rosenblum (1928) of 
range differences for a-rays in the metals Al, Ag and Au. From 
these range differences one does not, of course, obtain the values 
of the excess ranges. On the figure is included He where the 
statistical considerations in § 2 do not apply and the average 
excitation potential is much higher than the value given by the 
Bloch formula. As seen from the figure, this gas cannot either 
be made to follow the common curve for higher values of the 
variable x. For air the charge value Z = 7.22 can be used, since 
the expressions in question vary only with a low power of Z.

The ranges in Fig. 3 can be compared with the specific energy 
loss from Figs. 1 and 2. For this purpose we integrate according 
to equations (4) and (5) the averaged experimental specific energy 
loss given by the full-line curve in Fig. 1. However, the specific 
energy loss is not accurately known for a>values below ^0.2. 
We have here made the plausible choice of continuing the curve 
to the origin by a straight line on Fig. 2. The integration can 
then be performed, and the resulting curve is shown by the full­
line curve in Fig. 3. There is good agreement with the range 
measurements.

Using the integrated curve we have fixed the additive constant 
in the excess ranges. This gives the not unreasonable result that 
the excess range for a-rays is highest in He and vanishes in A. 
Moreover, the excess ranges are of the order of magnitude to 
be expected from the previously mentioned effects. For a-rays 
they are higher than for protons, corresponding to the screening 
of the charge appearing for higher values of x.

The description in § 2 has thus been found to apply rather 
well for the average specific energy loss. Similarly, the ranges 
seem to show mutual agreement on this picture, and further to 
be consistent with the specific energy loss in metals. But one 
should not, of course, be deluded as to the accuracy obtained 
from the procedure used here in discussing the ranges and com­
paring them with the specific energy losses.

§ 4. Collective and Independent Particle Descriptions.
In the following we shall consider the mechanisms involved 

in the present problems of atomic dynamics, and discuss the 
connection between the independent particle and collective de- 

Dan.Mat. Fys.Medd. 27, no. 15. 2 
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scriptions as they appear in statistical models of atoms. For 
a further justification of the present line of argument, the reader 
is referred to Lindhard (1953).

A detailed description of an atom is afforded by the Hartree 
model, where the wave function of the total system is the product 
of one-particle wave functions. When the system is disturbed by 
an external field these wave functions will of course not develop 
independently in time. Still, since the one-particle wave functions 
are governed by the same one-particle Hamiltonian, they will 
automatically remain orthogonal. This has the advantage that 
the exclusion principle need not be taken into account in the 
dynamical treatment.

Now, in actual treatments of atomic dynamics, one usually 
has recourse to the so-called independent particle model. By the 
independent particle model we shall here understand a descrip­
tion of the system as particles moving independently of each 
other in a fixed atomic field. This differs from the Hartree 
description in that the dynamics is governed only by the action 
of the external forces, the internal forces being regarded as 
unchanged. It is apparent that in this simplified description too 
the exclusion principle may be disregarded.

Let us apply the general expression for the average energy 
loss given by Bethe, where the logarithmic term in equation (1) 
has the form

For the present we assume that the velocity of the particle is 
high compared with the electronic velocities in the atom, and 
ask for the corresponding limiting value of the average excitation 
potential /.If we were concerned with only one electron bound 
in a static potential it would be the spacing between neighbouring 
quantum states which determined I, equal to h times the effective 
adiabatic frequency limiting the energy transfer. For high quantum 
numbers these quantities are then simply given by the frequency 
of revolution of the electron.

When the Hartree model or the independent particle model 
is introduced in (!') we may, according to the above, sum over
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all final states k for each electron, without regard to the exclusion 
principle. We can then write, instead of (1),

L = logC°- = fikloSMik’ <6)

i 1 k

where L contains only one simple summation over frequencies 
attributed to completely independent electrons. This formulation 
allows a direct application of correspondence arguments, as for 
one electron, and in the independent particle model the fre­
quencies co¿ will for high quantum numbers represent essentially 
the revolution frequencies for the electronic states in question. It 
is clear that, if one took the same electronic states in the independ­
ent particle model as in the Hartree model, the formula would 
lead to different results in the two instances, on account of the 
neglect of polarization effects in the former model.

The picture with independently moving electrons is thus 
characterized by certain frequencies of revolution in the classical 
limit, and it is based on an analogy with a single electron in a 
fixed potential. Now, we found in § 2 that the two kinds of 
frequencies one may imagine in the atom—the classical resonance 
frequency determined by the interaction, and the frequencies of 
revolution—behave in the same manner in the statistical descrip­
tion. It even appeared that a distinction between the two was 
rather artificial in the present dynamical problem. On account 
of this equivalence of the two kinds of frequencies it seems 
possible to picture the dynamical behaviour of the atom as being 
governed only by the interaction and inertia of the electron cloud, 
instead of by the frequencies of the independent particle model.

In order to appreciate the consequences of the interaction 
picture we shall first consider the effect of interaction in the simple 
case of an extended homogeneous electron gas. It has been shown 
by Kramers (1947) that the specific energy loss by a heavy 
charged particle in a gas of free electrons at rest is given by

dE 4%z2e4 . 2 mu2
,,, =-------T" ’ Ï? ‘ lo& T ~ ’dR mi/ îïa>Q

(7)

where q is the density of electrons, and co0 — (4 .tc2o/zz?)12 the 
classical resonance frequency of the medium.

2*
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Equation (7) shows that the frequency determining the adia­
batic limit is just a>0. This result may be obtained directly when 
considering in more detail the competition between the polarization 
in the gas and the direct force from the penetrating particle 
(A. Bohr (1948)). In fact, for a collision with impact parameter/? 
between an electron and the particle, the force on the electron 
will be approximately ze2/p2, and since the collision time is p/i> 
the displacement in space of the electron during the impact must 
be (ze2lmp2)‘(p/v)2 = ze2/mv2. The electronic displacements give 
rise to a polarization force Á tcqzei/nw2, and accordingly the force 
from the particle will be compensated by the polarization for 
an impact parameter p = v/co0, from which follows the formula 
of Kramers.

In this deduction the electrons were supposed to be at rest 
before the collision. But it can be shown easily that, even for a 
degenerate gas, the formula (7) remains valid for a penetrating 
particle of velocity high compared with the velocities of the 
electrons in the gas. Indeed, we may, as mentioned, neglect the 
exclusion principle in the calculation of the perturbed motion of 
the electrons, and it is then seen that the displacements of the 
individual electrons during the collision will be just as above. 
We thus find the same adiabatic limit as before, and, since the 
average energy transfer for a given impact parameter is to the 
first order independent of the electron velocities, we arrive again 
at formula (7).

In calculations of the effects of polarization, where one is 
concerned primarily with large impact parameters, the behaviour 
of the electrons can be described on classical mechanics when 
their quantum numbers are sufficiently high. Already from this 
circumstance it could be foreseen that for a free electron gas the 
adiabatic limit is determined by the classical resonance frequency, 
which is the only frequency defined in a classical description of 
the system.

For lower velocities of the particle the energy loss differs from 
that given by the equation (7). In the limit for very slow par­
ticles, Fermi and Teller (1947) have shown that the energy 
loss in a degenerate gas is approximately proportional to u. We 
shall here use a similar estimate by Lindhard (1953), where the 
logarithmic term per electron, L, is found to be approximately
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1 Í2nw2\3/2 
20\ ÏÏco0 )

instead of the value L = log (2 nw2/hcoo) in (7). The two formulae 
are to be joined for an argument somewhat larger than ten.

In this discussion of polarization effects we have used the 
conventional picture of a free electron gas. It may be that this 
picture does not represent closely an actual extended system of 
electrons. Still, it does seem to give a sufficient indication of the 
behaviour to be expected in atomic systems, when combined 
properly with the corresponding ideas regarding the orbital 
motions and revolution frequencies of the electrons.

We have seen that for the present purpose the extended electron 
gas may be described essentially as a compressible classical 
liquid of a given density of mass and charge. It is clear that, if 
the density of the system—and consequently also the classical 
resonance frequency co0—varies only slowly in space, we can 
compute the total stopping of the particle by averaging (7) over 
space. But if we try to extend this liquid picture to the case of 
an atom we meet with the apparent difficulty that here the density 
varies quite rapidly in space. Still, let us tentatively apply the 
procedure of averaging (7) over the atom. This leads to the 
following expression for the logarithmic term in the stopping 
formula

L = y ( d3r • Q (r) log (8)
J n C0q

where coq = 4 %e2o (r)/m varies in space proportionally to the 
electron density @(r). It is now seen from the structure of for­
mula (8) that it may be expected approximately to account for 
the stopping by heavier atoms. Indeed, in formula (7) a sum­
mation is supposed already to have been made over the distri­
bution in momentum space. When we now average over ordinary 
space this will correspond to an integration over phase space. 
More precisely, we can consider (8) as an outcome of the Bethe 
formula (1') with generalized oscillator strengths, when the 
statistical model is applied in a literal manner and only the 
electronic interaction is included in the dynamics.

In order to illustrate the connection between the two pictures 
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used above we shall compare them for the case of an extremely 
simple statistical model of atoms. Let the orbital velocity and 
radius of the n’th electron in an atom be given by

(9)

where the effective quantum number v is supposed to be the same 
for all the electrons, and equal to a constant, y, times Z1'3. In 
this description the atoms have the same similarity as in the 
Thomas-Fermi model, and if y is slightly less than 1, formula (9) 
even gives approximately the same density distribution as the 
Thomas-Fermi model for the major part of the atom. For the 
n’th electron we now find that the revolution frequency wn = 
vn/an — (vo/ao) ■ (n2lv3) is exactly equal to the classical resonance 
frequency co0 for the density given by (9) at the distance an from 
the nucleus. The frequencies o¡ and co0 (r) entering in (6) and 
(8), respectively, are thus the same and the two formulae give 
equal results.

Thus far, we have treated separately the revolution frequencies 
of the independent particle model and the classical resonance 
frequencies. As mentioned, it will seem difficult to distinguish 
between the two, and it is possible to describe the dynamics of 
the atom using only one of the two concepts. Nevertheless, for 
any particular model of the atom the magnitude of the separate 
contributions of the two frequencies is prescribed. When trying 
to find the total effect on the stopping we note that the force 
constants involved will be proportional to the squares of the 
frequencies. The total effective frequency squared is then the 
sum of the two squares. Since the two kinds of contributions 
behave in the same manner we can write

L = ~{ d3r ■ Q (r) log 2”W , (8')
Z J

where / is a constant. The value of / we estimate from the sim­
plified model (9) where con and m0 are equal in magnitude. On 
the basis of this result we assume in the following, for simplicity, 
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the value / = 21/2 for heavier substances. For the very lightest 
substances, where the polarization in the atom is of minor impor­
tance, the quantity / will be expected to approach the value 1.

The formula (S'), as it stands, should give an account 
of non-relativistic polarization phenomena in dense substances, 
and from the deduction of (7) it is clear that the formula will 
give a fair representation also of the stopping contribution from 
free electrons. An interesting question is here the effect of damping 
by resistance, due to random collisions of the freely moving 
electrons with the lattice. If the collision frequency were com­
parable with the resonance frequency an essential change would 
result in the stopping formula. However, in all known cases the 
collision frequencies are small, and the effects of resistance can 
be neglected. This circumstance was not recognized by Halpern 
and Hall (1948) in their treatment of polarization effects in 
carbon. The damping introduced by these authors leads to an 
anomalously high effective value of / in graphite (~ 190 eV). 
Their result is at variance with recent measurements (Bakker 
and Segrè (1951), I = 76 eV).

§ 5. Theoretical Estimates of Stopping Power.

On the basis of equation (8') we can compute the excitation 
potential per electron, /0, in Bloch’s formula (2). The results 
for various atomic models are listed in Table 1. For the 
constant / we have chosen the value 21'“ introduced above. One 
finds approximate agreement with the empirical value of the 
Bloch constant, about 10 eV. The result of the Lenz-Jensen 
description appears to be a fairly good average of the Hartree 
model. The value for the Thomas-Fermi model is a little lower; 
it is characteristic that, while the average binding in the Thomas- 
Fermi model is closely equal to that in the Lenz-Jensen descrip-

Table 1. Values of the Bloch constant Io — I/Z (in eV), 
calculated from (8') with / — 211'2.

Thomas-Fermi Lenz-Jensen
Hartree

A atomic Hg

8.9 10.7 11.0 9.6



24 Nr. 15

tion, averages of the kind (S') are better represented by the 
latter model. Regarding the value of Io for mercury we note that 
in the metallic state it will be slightly higher than for free atoms.

The agreement in Table 1 with the empirical values may be 
regarded as fortuitous, but it gives a useful guidance in the 
further treatment. The above results apply in the case of par­
ticles of velocity so high that the potential I remains velocity­
independent. We shall now consider some of the aspects of the 
rather involved case presented for lower velocities, and in par­
ticular treat the simpler question of stopping for the lowest 
velocities covered by the statistical model, or 0.1 < x < 5. As 
before, it can be useful to apply the less familiar picture of polari­
zation when estimating the energy loss.

Formulae such as (6) show that I is no longer independent 
of velocity when the arguments 2 mv2lha>i in the logarithmic 
terms are not large compared with unity. The resulting gradual 
change in I with velocity may just as well be calculated from the 
electron gas description corresponding to (7). In this picture the 
energy loss will be much reduced if comax — 2mu2/h is of the 
order co0, as seen from (7'). The reduction in the contribution 
to the energy loss from the individual electrons, or from the 
different regions in the atom, does not set in at all abruptly, but 
the summation over electrons with widely different revolution 
frequencies makes it natural to proceed at first as if the change 
were abrupt. We then assume that the low frequencies in the 
atom contribute in the usual manner to the energy loss, while 
the high frequencies give no contribution, the division between 
high and low frequencies being given by comax/C, where C is a 
constant. The effect of this cut-off procedure can be seen most 
directly from the simplified atomic model (9). Indeed, the more 
refined statistical models of the atom lead in this case essentially 
to the same result. Using (9) we now sum in (8') over the 
frequencies less than comax/C and find 

(10)

where the effective quantum number v is written as y-Z1'3. The 
specific energy loss thus becomes proportional to Z1,2/u, cor­
responding to the simple law for a-rays mentioned earlier. This 
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derivation is similar to that used by N. Bohr (1948), equ. (3.5.7), 
but the resulting formula is somewhat different.

As to the value of the constant of proportionality in (10), we 
see that it varies only slowly with the cut-off C. The parameter y 
is now so adjusted as to give for high velocities the correct value 
of 70 — 10 eV; this requires y = 0.71. We can then compare 
with the approximate value of L determined from the experi­
ments at low velocities, which lead to L = 1.35 -x’1/2 (see Fig. 2). 
The value required for C from this is C = 5.6. Such a high 
value for the cut-off in the energy loss is in line with the discussion 
by Bethe for hydrogen, or K-shells in general, where the reduction 
is considerable when v is of the order of the electron velocity, 
i.e. for a value of the argument in the logarithm much larger 
than unity.

A similar result is obtained when formula (7') is applied. In 
the atomic model (9) the integration is performed over the elec­
trons for which respectively (7) and (7') are applicable. This 
gives

L = 1.36-.r1/2 — 0.016-x3'2, (11)

and it so happens that formula (11) for lower values of x is in 
close agreement with the experiments shown in Fig. 2. The full­
line curve on the figure represents (11). If one allows for an 
uncertainty by a factor 2 in (7') a latitude will result of about 
10 °/0 in the formula (11). The formula joins smoothly to the 
one which applies for high velocities at a value of x equal to 19.

The variation of (11) with x is qualitatively of the kind found 
on Fig. 1. For increasing x the effective potential defined by 
(11) = log(2nw2//) increases from low values to a maximum 
of about 16-17 eV, occurring at x ~ 5, and then decreases to 
10 eV. The gradual cut-off (7') is in this respect superior to the 
abrupt one leading to (10), because it is effective for considerably 
higher values of x. But even though the initial part of the curve 
(11) is not wrong the maximum in I is too narrow, and for x 
between about 6 and 30 the curve should lie somewhat lower.

One might suppose that the shortcomings of formula (11) for 
higher values of x are due to the defects of the simplified atomic 
model (9), where the firmest electron bindings are not properly 
accounted for. One could then attempt to use, e.g., the Lenz- 
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Jensen model. This leads to a slight improvement for higher 
velocities, but only part of the experimental deviation from the 
Bloch formula can be accounted for. For low velocities the 
Lenz-Jensen description gives even worse agreement with the 
experiments, which indicates that the good agreement of (11) is 
somewhat accidental.

We shall not attempt further improvements of the present 
treatment, which would appear to demand not merely a more 
detailed picture of the electronic states, but rather a description 
of the adiabatic effects and the polarization considerably more 
elaborate than in the present discussion.

Let us return to the question of the calculation of the average 
excitation potential I in the limit of high velocity of the particle. 
In the first part of this paragraph we found values of I from 
various atomic models. As soon as a more detailed atomic de­
scription as the Hartree model is used there will appear minor 
individual deviations from the relation of Bloch (2). This is 
indicated in Table 1, for argon and atomic mercury. Similar 
differences occur when the bindings in molecules or solids are 
taken into account. One can attempt to evaluate such differences 
on the basis of equation (8'). However, estimates of this kind 
are not expected to be very accurate, since they involve the most 
loosely bound electrons in atoms.

In order to see how much the formula (8') can be in error 
for the most loosely bound electrons we use it in the case 
of the lightest elements, where it should be least applicable. We 
introduce the actual density distributions in the light atoms and 
find then from (8') a corresponding potential I. For these sub­
stances it will be natural to put / = 1, because in the dynamics 
each electron moves in a nearly static atomic field, the separate 
effects of polarization being small. The results are shown in 
Table 2, where for molecular hydrogen we have simply put 
Z — 1.2. For helium we have used hydrogen wave functions, 
with Z— 1.69. The valence electrons in metallic lithium are 
assumed to be distributed with constant density in space. These 
rough descriptions of the lightest elements will be accurate enough 
for our purpose.

The approximate correctness of the results in 'fable 2 and 
Table 1 seems to indicate that one can estimate the changes zl I
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Table 2. Comparison between the measured 
I (in eV), and the value given by (8') with / 
= 1. The measurements are by Mano ( 1934), 

and Bakker and Segrè (1951).

Formula
(8')

Bethe’s 
formula Exp.

- H22 2 16 17.62’ 15—16

He 37 43 35
solid Li 36 45n 34—37

11 Estimate by A. Bohr (1948).
2) Platzman (1952) quotes the value 19 eV.

in I due to chemical bindings, or due to deviations from the 
statistical model for different atoms, by introducing the density 
changes in formula (8'). The calculated values of A I can hardly 
be more in error than corresponding to the latitude in the values 
of /. The changes Al, thus obtained, can never become very 
large, so that only minor deviations from the Bragg rule will 
occur for a particle of high velocity. We note that this conclusion 
disagrees with some of the measurements concerning liquid water 
and water vapour, where considerable deviations from the Bragg 
rule have been reported (cf. Platzman (1952)).

§ 6. Straggling in Energy Loss and Range.

The straggling in energy loss, or straggling in range, can be 
calculated in a direct manner when the cross sections for the 
individual possible energy transfers are known (N. Bohr (1948)). 
We shall for the present consider only the case where the particle 
has penetrated a layer of thickness sufficient to ensure that the 
distribution in energy loss is approximately Gaussian. The average 
square fluctuation in energy loss then determines the distribution 
completely, and it is given by the familiar formula

£2 = <(¿E —<JE»2> = (12)
i

where is the cross section for energy loss 7). The con­
tributions to the straggling are thus weighted towards the close 
collisions, and the effect becomes independent of the screening
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in the distant collisions if the velocity v is large. For a fast particle 
the cross section for energy transfer T in close collisions is

(13)

where relativistic effects are included, and ß — v/c. We assume 
that the particle is so heavy that the maximum energy transfer 
to an electron is Tmax = 2 nw2/(l — ß2). The straggling in energy 
loss is accordingly’

i-C
Í22 = 4%j2e4X-d/?-Z1 (14)

I — ß

which leads to an average square fluctuation in range given by 

where ß — ß (E').
For lower velocities the problem is more involved and, as for 

the average energy loss, one will expect that the more strongly 
bound electrons give reduced contributions. The discussion here 
is in line with that in the preceding paragraphs, but of a more 
qualitative kind. Of course, the same holds for the measurements 
where the straggling cannot be determined as accurately as the 
range or specific energy loss.

While the absolute value of the straggling per unit path is a 
constant for high, but non-relativistic, velocities it will for lower 
velocities decrease towards zero. Since this is true for each 
separate frequency in the atom, one may introduce a cut-off 
for a suitable value of 2 mu2/h a>0, and in this way estimate the 
straggling in collisions with atoms. The important question is then 
the place at which the reduction sets in. This can be estimated 
by taking, for instance, the result for the case of a free gas. It is 
here convenient to quote the value of the straggling relative to 
the energy loss, which quantity is a measure for the magnitudes 
of the energy transfers in the collisions. For a free Fermi gas of 
high density one finds roughly, in the limit of low velocities 
(Lindhard (1953)),
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ß2
dE V (5 m/7<z>0)1/2,

straggling is according to (16) of

(17)

of the particle. When integrating over the

(17')

atoms sufficiently heavy for the statistical 
relative

m

corresponding to an effective cut-off' at about 2 nw2/fr co0 = 3. 
In collisions with

model to apply, the
the form

where Jf is the mass
atom, using the formulae (14) and (16) in the atomic model (9), 
it is found that for low values of x the function u tends to a 
constant value, given approximately by

ß2
EdE

This result for the relative straggling coincides with that found 
by N. Bohr (1948). For higher velocities the straggling approaches 
smoothly the value given by (14), and one may write

(17")

where the formula holds when relativistic corrections can be 
neglected.

The straggling in range for lower velocities can be found 
directly from (17'). We obtain here

(18)

For higher values of x one can derive from (15) the approximate 
formula (cf. N. Bohr (1948), equ. (5.2.7))

(44Í2 _ _2 /n^_2y2'
Ä2 _L(x)M\ 5 c2 (19)

where terms in u/c are included up to second order. The simple 
formula (19) is not much in error for proton energies even as 
high as those used in the measurements of Mather and Segrè 
(1951). It should be mentioned that these authors employed an 
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essentially non-relativistic formula for the straggling in range, 
different from (15) and (19).

The measurements of straggling in energy loss are mainly 
in the region of high values of x. As regards a comparison with 
experiments for cases where also smaller values of x enter, and 
equation (17') should apply, the reader is referred to a recent 
publication by C. B. Madsen (1953).

We are much indebted to Professor N. Bohr and M. Sc. 
A. Boiir for numerous enlightening discussions and comments 
on the subject of the present paper. Dr. C. B. Madsen has kindly 
placed at our disposal the results of his experiments before 
publication, which has been of great value in this investigation. 
Further, we wish to thank Mr. Knud H. Hansen for help with 
numerical calculations.
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I. Introduction.

Great progress has been achieved in recent years in the ex­
ploration of nuclear properties, and an extensive body of 

data is now available, giving information on many aspects of 
nuclear structure.

Strong evidence has been accumulated that the nucleons may 
be considered as occupying states of binding characteristic of in­
dependent particle motion in the averaged nuclear field. This 
recognition has led to the development of a nuclear shell model, 
which exhibits many similarities with the description of atomic 
constitution (Mayer, 1950; Haxel, Jensen and Suess, 1950, 
1952). The shell model has been an important guide in the 
interpretation of nuclear phenomena; besides the numerous fea­
tures of the nuclear systematics associated with the discontinuities 
of binding energies at closed shells, the model especially explains 
many regularities of nuclear spins and parities.

There are, however, also essential differences between atomic 
and nuclear structures, arising from the fact that the nuclear field 
is generated by the nucleons themselves, while the atomic field, 
responsible for the electronic binding, is largely governed by the 
attraction from the central nucleus. The large mass of the atomic 
nucleus, as compared with the electrons, makes it possible to a 
first approximation to treat the atomic field as a static quantity, 
but, in the nuclear case, the dynamic aspects of the field, asso­
ciated with collective oscillations of the structure as a whole, 
must be expected to play an essential role. The significance of 
collective features in a system where the cohesion is a result of 
the mutual attraction of the particles has earlier found expression 
in the liquid drop nuclear model (N. Bohr, 1936; N. Bohr and 
F. Kalckar, 1937).

The importance of taking into account the collective aspects 
of the nuclear structure is clearly evidenced in the empirical 
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data, and ordered types of motion of the nucleons are strikingly 
exhibited by a number of phenomena:

1) The occurrence of the fission reaction, many features of 
which can be understood on the basis of the liquid drop model 
(Meitner and Frisch, 1939; Bohr and Wheeler, 1940).

2) The large quadrupole moments observed for many nuclei, 
which in some cases are more than 20 times larger than single­
particle estimates (Casimir, 1936; Townes, Foley and Low, 
1949; cf. also Fig. 9 on page 55 below). It has been pointed 
out by Rainwater (1950) that the magnitude of the quadrupole 
moments can be accounted for by the tendency of the particle 
structure to deform the nuclear surface.

3) The occurrence of nuclear gamma transitions of electric 
quadrupole type with lifetimes about a hundred limes shorter 
than single-particle estimates (Goldharer and Sunyar, 1951). 
The existence of collective transitions with such short lifetimes 
is a characteristic feature of the excitation spectra of strongly 
deformed nuclei (Bohr and Mottelson, 1953).

One is thus led to describe the nucleus as a shell structure 
capable of performing oscillations in shape and size. These col­
lective oscillations involve variations of the nuclear field and are 
therefore strongly coupled to the particle motion. The general 
dynamics of such a coupled system of individual particle motion 
and collective oscillations has previously been considered* ’ **.  
The system exhibits many analogies to molecular structures with 
the interplay between electronic and nuclear motion.

* A. Bohr (1951, 1952). In the following, we refer to sections and equations 
of the latter paper as (A. § V. 4), (A 39), etc.

•* Such a unified description of nuclear structure has also been discussed 
by Hill and Wheeler (1953) (“the collective nuclear model”).

In the present paper, we consider the further development of 
such a unified nuclear model incorporating collective and individ­
ual-particle features, and pursue its consequences, especially 
for the nuclear properties pertaining to the ground state and the 
low energy region of excitation. The available empirical evidence 
is analyzed in an attempt to ascertain to what extent a com­
prehensive interpretation is possible on the basis of such a 
description of the nucleus.
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In Chapter II, the formulation of the coupled particle-collect­
ive model and its general dynamical features are considered. The 
subsequent three chapters discuss the properties of nuclear ground 
states (spins, magnetic moments, and quadrupole moments) which 
yield information on the nuclear coupling scheme. Chapter VI 
treats the level structure of the low energy region, resulting from 
the interplay of the particle and collective types of excitation. 
Important evidence on the interpretation of nuclear excitations 
is afforded by the analysis of gamma and beta transitions (Chap­
ters VII and VIII). A summary of main conclusions is given in 
Chapter IX.

Some details, mostly of a mathematical nature, are deferred 
to appendices (Ap. I—IV). In Appendix V, a description of nu­
clear reactions is formulated, which embodies features of single­
particle scattering as well as the formation of the compound 
nucleus, and which assumes the same couplings as those oper­
ating in the low energy phenomena. In Appendix VI, a discussion 
is given of the excitation of nuclei by the electrostatic field of an 
incident particle, which should be a valuable tool, especially in 
the study of collective types of excitation.

The present investigation has been carried out at the Institute 
for Theoretical Physics of the Copenhagen University*, and we 
have greatly benefited from numerous discussions with members 
and guests of the Institute, as well as with members of the 
Theoretical Study Group of CERN (European Council of Nuclear 
Research), which for the last year has been assembled at the 
Institute. Especially, we are indebted to Professor Niels Bohr 
for his continued interest in this work and for many enlightening 
discussions on the combination of the evidence on nuclear col­
lective and individual-particle motion in a consistent description 
of nuclear dynamics. We would also like to acknowledge our 
many stimulating contacts over a period of years with Professors 
V. F. Weisskopf and J. A.Wheeler, who have given valuable 
comments on many problems of nuclear structure.

* One of us (B.R.M.) wishes to acknowledge the grant of an A.E.C. postdoct­
oral fellowship, held during the years 1951—53.



II. The Coupled System of Particles and 
Collective Oscillations.

a) Formulation of the Model.

i. Collective coordinates.
The nuclear collective properties may be described by a set 

of coordinates « characterizing the spatial distribution of the 
nucleon density which, in turn, defines the nuclear field. Such 
collective coordinates are symmetric functions of the individual 
nucleon coordinates.

For a system with a small compressibility, the collective 
degrees of freedom which have the lowest energies are associated 
with deformations in shape with approximate preservation of 
volume. Assuming the system to have a sharp surface, the normal 
coordinates of these oscillations would be the expansion para­
meters of the nuclear surface defined by (cf., e.g., (A. 1))

R (&, (p) = Ro 1 + X (#> 
Å/LI

(II.l)

where Ro is the equilibrium radius, and the normalized 
spherical harmonic, of order A, pt. Such surface oscillations are 
associated with a collective flow with the same velocity field as 
for the oscillations of an incompressible classical liquid drop (cf., 
e.g., (A.31)). This leads to the expression 

(II.2)

for the collective parameters in terms of the polar coordinates 
(rp, &p, (pp) of the individual particles.

The nuclear compressibility* implies a non-constant radial

♦ For estimates of the nuclear compressibility, cf. Feenberg (1947) and 
Swiatecki (1951).
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density distribution, and the proper modes can no longer be char­
acterized as pure surface oscillations, but are also accompanied by 
density changes in the nucleus. The degrees of freedom associated 
with the compressibility imply that, for a given angular depend­
ence, there is a set of normal oscillations with different radial 
density variations. The lowest among these has no radial nodes 
and corresponds, in the limit of vanishing compressibility, to the 
surface oscillations. This mode is in general the most important 
for the low energy nuclear properties; its coordinates will be of 
the form (2)*  with some modification of the radial function 
resulting from the compressibility.

* A single number refers to an equation in the chapter in which the reference 
is made.

** For a discussion of the implications of the exclusion principle for the 
quantum rotations of a quasi-rigid system, cf. Teller and Wheeler (1938).

For a small compressibility, one can obtain corrections to 
the proper oscillations by considering only first order terms in 
the deviation from a uniform density distribution (Flügge and 
Woeste, 1952; Woeste, 1952). In the case of an essentially 
non-uniform radial equilibrium distribution, major modifications 
in the collective properties may be expected.

The existence of two kinds of nucleons implies additional 
types of oscillations in which neutrons and protons move with 
respect to each other (Goldhaber and Teller, 1948; Stein- 
wedel and Jensen, 1950). These oscillations are of special 
interest for the nuclear photo-effect but, because of their large 
frequencies, are in general of lesser importance for the low 
energy phenomena.

The types of collective motion considered correspond to an 
irrotational flow of nuclear matter, which is the collective re­
sponse to variations in the nuclear field. Vorticity effects are 
already contained in the description of the particle structure for 
a fixed field and do not occur as collective phenomena provided 
the independent-particle approximation is adequate to describe 
this structure. It is also seen that vortex motion cannot be de­
scribed in terms of parameters, such as the which are 
symmetric functions of the particle coordinates and thus, due 
to the exclusion principle, cannot in a simple way be separated 
from the state of the particle structure.**
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ii. Oscillations of a shell structure.
The relationship of the particle and collective motion is 

especially simple if the frequencies a> for particle excitation arc 
large compared with the frequencies a>c of a collective type of 
motion. The nucleus can then be treated, in analogy to molecules, 
on the basis of the adiabatic approximation, and the appropriate 
wave function is of the type

= ^v(«)Vn(æ. «)> (H.3)

where x represents the coordinates, including spin variables, of 
all the particles in the nucleus. The wave function ipn (.r, a), 
specified by a set of quantum numbers n, is the shell model 
wave function for a fixed field specified by the parameters a. 
The wave function ør(«) describes oscillations of the nucleus 
as a whole, characterized by additional quantum numbers, v*.

In the approximation cop » coc underlying (3), there corre­
sponds to a state n of the particle structure a set of states with 
different quantum numbers r, corresponding to a Hamiltonian 
of the form

Hc =T(„') + E„ (a), (II.4)

where the potential energy En(a) is the energy of the particle 
structure n, calculated for fixed a. The existence of a collective 
kinetic energy T is contained in the implicit dependence of the 
wave function on x through a and may be obtained by writing 
the nucleon velocity as a sum of a velocity with respect to the 
nuclear field and a velocity of the collective flow. For small 
amplitudes of oscillation, T is a quadratic expression in the

If the particle structure prefers spherical symmetry, the 
deformation energy may be expanded around the equilibrium 
(«2U = 0), and the surface Hamiltonian reduces to (cf. A. (2 and 3)) 

= ^CA|«M|d (11.5)

Á/Í J
* A wave function describing the adiabatic oscillation of a shell structure 

has also been given by Hill and Wheeler (1953; eq. (5)), but this expression 
appears to differ essentially from (3) above. The procedure employed by these 
authors of incorporating the collective motion both through the exponential 
factor involving the velocity potential and in the oscillator function /i(a) seems 
difficult to interpret; it appears that in the resultant wave function, obtained 
by integration over the a-variable, the function h does not directly represent the 
probability amplitude for a given deformation.
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which represents a set of harmonic oscillators with frequencies

The coefficient B) is associated with the mass transported by the 
collective flow and depends on the velocity field. For pure sur­
face oscillations described by the coordinates (2), one obtains the 
classical hydrodynamical expression (cf., e. g., (A. 4)),

where M is the nucleon mass. The coefficient represents the 
nuclear deformability; one may attempt to estimate from the 
empirically determined surface energy and the assumption of a 
uniform charge distribution. This leads to (cf., e. g., (A. 5))

where S is the surface tension and Ze the nuclear charge. The 
analysis of nuclear binding energies leads to the estimate 4%7?§S 
— 15.4 A2/3 MeV (cf. Rosenfeld, 1948, p. 24).

While the form of (5) has a rather general validity, it must 
be stressed that the analogy with the hydrodynamics of a classical 
liquid drop is of limited scope, and characteristic effects of the 
quantum structure of the nucleus are to be expected. Thus, the 
deformability will depend on the particle state in question* and 
the value of C; will be especially large for closed-shell nuclei 
which owe their particular stability to their spherical form.** The 
nuclear compressibility may also have an important effect on 
the value of B¿ and on the relation (2) between and the 
multipole moments.

When, in the following, we often make numerical estimates 
on the basis of the hydrodynamic approximation (2, 6 a and 6 b), 
it will be in order to gain a first orientation and to have a con­
venient reference with which to compare the evidence on the

* Features of the deformability of a quantum shell structure have been 
discussed by Gallone and Salvetti (1953) and by Hill and Wheeler (1953). 
Some comments on this problem from the point of view of the present formulation 
are given in Appendix I.

*♦ We are indebted to Dr. W. J. Swiatecki for valuable suggestions concerning 
this point.



14 II. The Coupled System. Nr. 16

Fig. 1. Nuclear deformability in the hydrodynamic approximation. The deformability 
coefficients of the first three proper modes of the surface (cf. (5); Â = 2, 3, and 
4) are plotted as a function of the atomic number A. The nuclear deformation 
energy is assumed to arise from a surface tension estimated from empirical bind­
ing energies and from the influence of a uniformly distributed electric charge 

(cf. (6 b)).
Fig. 2. F'reyuencies of surface oscillations in the hydrodynamic approximation. The 
phonon energies hco^ of the first three proper modes of the surface (cf. (6)) are 
plotted as a function of the atomic number .4. The deformabilities C; of Fig. 1 
are used, and the mass parameters B^ are taken from (6a) which assumes a velo­
city field of the type associated with surface oscillations of an incompressible fluid.

nuclear collective properties deduced from empirical data. In 
Figs. 1 and 2 are plotted the hydrodynamical values of C; and 
of the phonon energies for an assumed nuclear radius of

7?0 = 1.44 X A1/3 IO-13 cm. (II.7)

iii. Coupling to particle motion.
The simple separation between collective and particle types 

of excitations, corresponding to stationary states of the type (3), 
is no longer possible if the particles possess modes of excitation 
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with frequencies smaller than, or comparable with, the collective 
frequencies. The particle structure may then be non-adiabatically 
excited by the collective oscillations, and the nucleus must be 
described in terms of a coupled system of collective and particle 
degrees of freedom.

The particle degrees of freedom represent the low frequency 
modes of excitation of the particle structure, associated with the 
particles in the last filled levels. The bulk of the nucleons, whose 
energies are well below the maximum for the occupied levels, 
manifest themselves at moderate nuclear excitations only through 
the collective properties of the nucleus.

For the coupled system of surface oscillators, with coordinates 
and particle degrees of freedom, with appropriate coordinates 

x, the Hamiltonian may be written in the form

H = Hs + Hp (re) + Hint (x, aÅfl), (II.8)

where Hs is given by (5) and Hp represents the particle energy 
for a spherical nucleus. The coupling term Hini gives the energy 
dependence of the particles on the surface deformation.* ’ **

* The existence of an important coupling between particle motion and the 
nuclear deformation, associated with the centrifugal pressure exerted by the 
particle on the surface, was first recognized by Rainwater (1950).

♦* It is interesting to note that a somewhat similar effect has been discussed 
for the atomic spectra where a small level shift for non-penetrating orbits has 
been ascribed to a polarization of the atomic core (Born and Heisenberg, 1924; 
cf. also Douglas, 1953).

There may also be a contribution to Jf¡nt from the spin orbit force, but 
its dependence on a, is more ambiguous (Pfirsch, 1952; Davidson and Feen- 
berg. 1953).

Expanding Hint in powers of we get for the first term

Hint = — fp)’ (II9)

p

where the sum p extends over the particles included in 
The assumption of a sharp nuclear boundary implies that k(rp) 
has the form of a delta function at the surface with matrix ele­
ments given by (cf. Feenberg and Hammack, 1951)

<nZ|l(r„)|n7'> = V0ß’9i„((«o) «„T («o) . (11.10)

where n and I label the radial and orbital angular momentum 
quantum numbers of the particle with radial wave function iRn/. 
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The nuclear potential is denoted by Vo. For binding energies in 
the region 5—10 MeV, the matrix elements of k are approx­
imately independent of n ami I and are of the order of 40 MeV, 
assuming a kinetic energy inside the nucleus of 25 MeV. In the 
following, we therefore treat k as a constant. If particles are re­
placed by holes in a closed-shell structure, the sign of k is 
reversed.

In the following paragraphs, we shall discuss some approx­
imate solutions for the nuclear Hamiltonian (8) for various 
types of particle configurations. For most physical problems in­
volving low nuclear excitations, the collective motion associated 
with surface deformations of quadrupole type (Â = 2) are of 
primary importance. We especially consider the effect of these 
deformations and usually drop the index Â.

The coupled system of particles, obeying Fermi statistics, and 
surface oscillators, which are equivalent to a Boson field, is in 
many respects analogous to the dynamical system considered, 
for instance, in electromagnetic theory. The coupling term (9) 
is of a similar form as in the electrodynamic system, with the 
coupling constant k playing the role of the charge e. Thus, many 
effects characteristic of field theories, such as the influence of 
the field on the motion of a particle in an external potential 
(Lamb-Retherford effect), the interaction of particles through the 
intermediate field, etc., have their counterpart in the unified 
nuclear model. The formal analogies also imply that many me­
thods of solution are common to the two systems.

b) Coupling of Single Particle to Nuclear Surface.

An especially simple case of the coupled system occurs when 
the particle configuration can be described in terms of a single 
particle outside of a fairly stable structure of spherical symmetry. 
In this paragraph, we consider methods of treating this system, 
appropriate to different strengths of the coupling.

i. Perturbation approximation.
For sufficiently weak coupling, the motions of the particle 

and the surface are approximately independent. The state of the 
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particle is then characterized by the same quantum numbers 
as in the shell model. The surface oscillations*  are described by 
the number of phonons, N, each having an angular momentum 
of two units, the total angular momentum of the surface R, and 
its ¿-component mR. In general, two additional quantum numbers 
are required to specify completely the state of the surface, but, 
for small values of iV(iV<3), the above quantum numbers are 
sufficient.

* The quantization of free surface waves has been discussed by Nogami 
(1948), A. Bohr (1952), and Jekeli (1952).

*♦ The coupling between particle motion and surface oscillations has been 
considered in such a phonon representation by Foldy and Milford (1950).

*** We use the bracket notation of Dirac (1947). The proper vectors are 
given by | /; NR; IM >, while the expansion coefficients are < j; NR; IM j >.

Dan Mat.Fys.Medd. 27, no.16. 2

The effect of the coupling implies a certain interweaving of 
particle and surface motion, which for weak coupling is conven­
iently treated by expanding the wave function in the representation 
of uncoupled motion**»  ***

(11.11)

where j stands for the particle quantum numbers, while the total 
nuclear angular momentum and its z-component are denoted by 
I and M.

In the absence of coupling, the ground state is given by 
|j; 00; I — j, M> and, to first order, Hint, which is linear in afl 
(cf. (9)), only introduces the states |/; 12; I,M>, where the 
particle state j' has the same parity as the state j and differs by 
at most two units in the total angular momentum. The relevant 
matrix element for the creation of the one-phonon state is obtained 
from (9) and (A. § III.l), and is given by

<./; 00; I =j,M Hint /; 12; I, M >

<jNr>
(11-12)

in terms of the coupling constant k, and the surface frequency co 
and deformability C. The coefficients < j|7i|y'> can be express­
ed in terms of Racah coefficients and are given in Appendix II.

These matrix elements determine to first order the nuclear 
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wave function from which the various nuclear properties can 
be obtained. Thus, the coupling leads to a sharing of angular 
momentum between the particle and the surface, which is re­
flected in a reduction of the expectation value of jz. If j remains 
a constant of the motion, we get

___ 15 (2j- l)(2j + 3) F \
128% ;2O'+1)2 «/ (11.13)

The more general case in which particle states having a different 
angular momentum are admixed is considered in Appendix II.

For the following, it will be convenient to introduce the 
dimensionless parameter

X = 5 1 k
16% |/ j \/fra)C (1114)

as a measure of the strength of the coupling. From (13) one sees 
that the validity of the perturbation approximation is essentially 
determined by the smallness of x. The relevant parameter for 
the perturbation expansion is actually x]/j, which represents the 
order of magnitude of the amplitude of the one-phonon state.

ii. Strong coupling approximation.
For x|/y > 1, the perturbation treatment is no longer valid, but 

for X » 1 one can obtain another type of approximate solution 
to the coupled system (A. § V.3).*  For such strong couplings, the 
nuclear surface acquires a large deformation and, therefore, a 
certain stability in its spatial orientation. One then obtains an 
approximate solution by considering, first, the relatively fast 
motion of the particle with respect to the deformed nuclear sur­
face and, subsequently, the relatively slow vibration and rotation 
of the entire system.**

* Apart from factors involving /, the parameter x corresponds to the ratio 
of total nuclear deformation to zero point oscillation amplitude used in A to 
characterize the strength of the coupling (cf., e. g., (II. 22)).

This solution of the coupled nuclear system is in some respects similar 
to the strong coupling treatment of the nucleon-meson coupling, the j of the 
particle playing the role of the nucleon spin, or isotopic spin (cf., e. g., Tomo- 
naga, 1946). The nucleon isobars are the analogue of the nuclear rotational states.
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The surface will in general acquire an axially symmetric shape 
under the influence of the centrifugal pressure exerted by the 
particle. The resulting nuclear coupling scheme (A. Bohr, 1951), 
illustrated in Fig. 3, is thus analogous to that of linear molecules.

z

Fig. 3. Coupling scheme for strong particle-surface interaction. In strong coupling, 
the surface acquires an axially symmetric deformation. The angular momentum j 
of the particle precesses around the nuclear axis with a constant projection £?. 
The total angular momentum I is the sum of j and the angular momentum R 
of the surface. The coupled system of particle and surface rotates like a symmetric

z

top with quantum numbers I, K (projection of I on nuclear axis), and M (projection
of I on space fixed axis).

The angular momentum vector j of the particle precesses rapidly 
around the nuclear symmetry axis z' with a constant projection 
Q. The nuclear surface performs small vibrations, both with 
respect to magnitude and shape of the deformation. The rotational 
motion is like that of a symmetric top and is characterized by 
the three quantum numbers I, K, and M, representing the total 
nuclear angular momentum, its projection on the symmetry axis 
z' and on the fixed z-axis, respectively.

From the analysis which follows, one finds that the particle 
precession frequency is of order x2co, while the vibrational fre­
quencies are of order co. The rotational frequencies about the

2* 
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symmetry axis and an axis perpendicular to z are of order co 
and x2co, respectively. (Cf. also A. § V.3 and Appendix IV).

The strongly coupled system is conveniently described by 
introducing the Eulerian angles 0f specifying a coordinate system 
fixed in the nucleus, and the two additional surface coordinates 
ß and y defining the nuclear shape (cf. A. § 11.2). The total 
deformation parameter ß is given by

ß2 = A I “/J". (II.14a)

while y is an angular coordinate characterizing the eccentricity 
of the nuclear shape. Thus, for y = 0 and n, the deformation 
is symmetric about the z'-axis, and is of prolate and oblate shape, 
respectively (cf. A. Fig. 1).

The strong coupling wave function has the form (A. 118)

I £?; nßHy', IKM >
(11.15)

where describes the motion of the particle with respect to 
the deformed nucleus, while <pnß,n^ represents vibrations in ß 
and y characterized by the quantum numbers riß and iiy. Fin­
ally, the are the proper functions for the symmetric top, 
and describe the nuclear rotations. The normalization is such 
that 2) gives the unitary transformation from the fixed coordinate 
system to the nuclear coordinate system (cf. Wigner, 1931). 
The simultaneous occurrence in (15) of both signs for Q and K 
reflects the invariance of the surface with respect to a rotation 
of 180° about an axis perpendicular to z',* and is similar to the 
symmetrization of wave functions for homonuclear molecules 
(cf. Herzberg, 1950, p. 12811’.). The symmetrization ensures that 
the total parity of the strong coupling wave function equals the 
parity of the particle state. The sign of the symmetrization term 
in (15) depends on j, and if j is not a good quantum number, 
each part of / must be symmetrized with the appropriate sign.

The wave function (15), apart from the symmetrization, is 
actually of the form (3), corresponding to the fact that the pre-

* Cf. A. § V.2 for a discussion of the symmetry requirements for the strong 
coupling wave function.



Nr. 16 II. The Coupled System. 21

cession frequency of the particle is large compared to the collect­
ive frequencies of the system. This contrasts with the weak 
coupling situation where the degeneracy with respect to spatial 

orientation of/ provides a very easily excitable degree of freedom. 
Thus, (11) is in general not of the type (3).

The sharing of angular momentum between particle and 
surface approaches a definite limit with the realization of the

strong coupling scheme of Fig. 3. The expectation value of j is 
given by

-> ->
T <j • /> (11.16)

and for / • I we may write

j ’ I = Jill + jib + 73^3» (11.17)

where the components of the two vectors refer to the coordinate 
system fixed in the nucleus. One thus finds, for the state (15),

<7-7> = QK+(-)'-'■!(y4)(/+ïK>A,? <IU8> 

where the last term arises from the symmetrization and only con­

tributes for Q = K — - (cf. also Davidson and Feenberg, 1953). 

Therefore, from (16),

<À> = hZ+'dI' + c-<«•“» 

For the ground state we have I — K — Q, except for K = Q — - 
(cf. below), and thus

<Á> = jT_A/. (11.20)

For each particle state Ï2, we have a spectrum of vibrational 
and rotational states, as in the case of molecules (cf. (3)). The 
nuclear potential energy is a sum of the surface energy and of 
the particle energy as a function of the deformation and, if j is 
a good quantum number, is given by (cf. A. 77 and 98)
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wpot(ß, r) =

+ ^F + |/^ W eos y (3 -J (J + 1)), (11.21)

where Hp is the particle energy for an undeformed nucleus.
It is seen from (21) that, for j > 3/2, the lowest minimum of 

Wpot and, therefore, the lowest state of the nucleus, occurs for 
Q = j and a cylindrically symmetric equilibrium deformation 
with y = n (oblate shape). The equilibrium value of ß is given by

5 k 2j-l
C 4(j + 1)

(11.22)

in terms of the coupling parameter x (cf. (14)).
The kinetic energy of the surface motion consists of a vibra­

tional and a rotational part. For strong coupling, the dominant 
term is the vibrational energy (A. 48)

^vib
2B

, 1 1 ° ■ o

dß ß2 sin 3 y dy S1R dy (11.23)

The Hamiltonian obtained by adding (23) to (21) describes 
oscillations around the equilibrium positions of ß and y (cf. (4)). 
Since the zero point amplitude of ß is of order (fico/C)1/2, which 
is small compared to (22) for x > 1, one obtains approximately 
independent harmonic oscillations in the ß and y variables with 
states labeled by riß, ny.

The rotational energy can be expressed in terms of the angular 
momentum quantum numbers, and is given by*

fi2
2 3a

(A-£)2 1(1 + 1) —A2

+J 0+ D -O’ - (j+|)(/+1) »a,. ôK>, j
(11.24)

where the moments of inertia are given by (A. 27)

4 B/Fsin2 x = 1, 2, 3. (11.25)

* Cf. (A. 98); the last term in (24) arises from U1 (cf. A. 96) which contributes 
a diagonal term in the special case of Í2 = K — 1/2 (cf. also Davidson and Feen- 
berg, 1953).
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For Q = j, the lowest rotational state occurs, according to (24), 
for I = K = ß = j.

The case of j — 3/2 requires special consideration, since the 
last term in (21) has the same value for ß = 3/2 and y = n 
as for ß = 1/2 and y — 0. In this case, the potential surface 
has no pronounced minimum in y, which has the consequence 
that there is no exact limiting solution of the type (15). The 
strong coupling wave function has then a somewhat more complex 
form and requires the solution of a set of coupled differential 
equations. Still, it can be shown that the ground state is always 
I = 3/2 (cf. Appendix Ill.ii).

For j = 1/2 there is no coupling between particle and surface. 
Actually, in this case, the strong coupling wave function (15) 
reduces to the uncoupled wave function.

The Hamiltonian consisting of the three terms (21), (23), and 
(24) does not represent the total energy of the nucleus. There 
are additional terms (cf. A. 96) which are non-diagonal in the 
representation (15) and which cause the breakdown of the 
strong coupling solution for x < 1. An estimate of these pertur­
bation terms provides a measure of the accuracy of the strong 
coupling solution and can be used to obtain correction terms 
when X has intermediate values (A. § V.4; Ford, 1953; cf. also 
Appendix Ill.ii).

The non-spherical character of the nuclear field implies that 
the j of the particle is not an exact constant of the motion. Major 
modifications in may occur if there are close-lying single­
particle levels which are coupled by the surface. In such cases,

may be considered as a superposition of particle states with 
different j, however all with the same ß. The last term in the po­
tential energy (21) is then to be replaced by (cf. (9) and (A.12))

Wcoupi = —kß cos y Yo (&') , (11.26)

which is a non-diagonal matrix in the particle quantum numbers 
j whose elements are given in Appendix Ill.i. The coordinate 

of the particle is referred to the nuclear z'-axis. The rotational 
energy remains of the form (24), which is diagonal in j.

The potential energy matrix must now be diagonalized and 
its proper values determined as a function of the deformation. 
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The minimum of the lowest potential energy surface corresponds 
to the ground state equilibrium and the ground state is deter­
mined as the proper vector of IV at equilibrium.

Such effects are of importance in causing a partial decoupling 

of the particle I and s and also occur in regions where there 
are near-lying levels of the same parity (e. g. Si/2—^3/2; 

P3/2 — /s^)- In the case of j — 1/2 states, the non-diagonal 
terms are of special interest in making possible a strong coupling 
to the surface. Calculations of this type are employed in par­
ticular in the Addendum to Chapters IV and V.

iii. Intermediate coupling.
The treatments of the coupled system discussed above apply 

in the limiting cases of weak and strong coupling. It is of interest, 
however, to follow the transition between the two coupling regions. 
This is of special importance for large j, since the perturbation 
approximation is valid for ar|//«l, while the strong coupling 
approximation demands x » 1. This gap between the regions of 
validity of the two solutions reflects the increasing number of 
phonons necessary to achieve the strong coupling situation for 
increasing j.

In the intermediate coupling region, one may employ the 
weak coupling representation (11), carrying the expansion 
sufficiently far to give an adequate representation of the nuclear 
state. The determination of the coefficients of the wave function 
requires the solution of the corresponding secular determinant.*

As an illustration of this procedure, the solution has been 
worked out for the case of I — j = 3/2, including all states with 
phonon number N up to 4. The expansion coefficients are plotted 
in Fig. 4 as a function of r.**

Further information about the intermediate coupling region 
can be obtained by considering the case of very large j for which 
one can obtain a semi-classical solution valid for all x. (Cf. 
Appendix IV). From this solution, one can calculate (Ap. IV.10)

♦ Cf. the non-adiabatic treatment of the meson-nucleon system discussed by 
Tamm (1945) and Dancoff (1950).

** Note added in proof: The intermediate coupling treatment, based on the 
uncoupled representation, has been extended by D. C. Ciioudhury (cf. forth­
coming publication), who has studied level structures, as well as magnetic mo­
ments and quadrupole moments, for a number of configurations.
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<Á> (11.27)

correct to terms of order M/I. To this order, (27) coincides for 
small x with the perturbation result (13); for large x, the value 
of (27) equals the strong coupling result (20).

Fig. 4. Wave function in intermediate coupling for I = j — 3/2. The wave function 
for the ground state (I = 3/2) of the system consisting of a / = 3/2 particle 
coupled to the nuclear surface oscillations is expanded in the representation of 
uncoupled motion (11). The Hamiltonian is diagonalized including all states with 
up to four phonons, and the probability amplitudes are plotted as functions of 
the coupling parameter x (cf. (14)). In the particular case considered, only a single 

state occurs for each value of the phonon number.

The process of transfer of angular momentum to the surface, 
as a function of x, is illustrated in Fig. 5 for the various solutions 
considered in this chapter.

In the hydrodynamic approximation (cf. Figs. 1 and 2), 
one obtains from (14), assuming k = 40 MeV, a coupling strength 
of .r = 0.9 j~1/2 for A = 20 increasing rather slowly with A to 
a value of x =1.4 j~112 for A = 200. From Fig. 5 one sees that 
this would correspond to an intermediate region in which neither 
the perturbation nor the strong coupling approximation would 
be very reliable.* Besides the contribution of Hint that is diagonal

* Similar conclusions have been drawn (Davidson and Feenberg, 1953; 
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in j, there is also in general a contribution to the coupling energy 
from the interaction between states of different j. In some cases, 
this latter coupling may considerably increase the effective value 
of X.

For a single particle moving with respect to a closed-shell 
core of great stability, the expected large value of C, as compared 
with the hydrodynamic estimate (cf. § Ila.ii and Ap. I), may

Fig. 5. Sharing of angular momentum between particle and surface motion. The 
particle-surface coupling implies a transfer of angular momentum from the particle 
motion to the surface oscillators, which, in the limit of strong coupling, approaches 
the value (20) for j > 3/2. For / = 3/2, the limiting ordinate in the figure is some­
what in excess of unity (cf. Ap. III.8). The gradual transfer of angular moment­
um as a function of the coupling parameter x (14) is shown for the case of 

/ = 3/2 (obtained from Fig. 4) and j )) 1 (cf. (27) and Ap. IV).

lead to a considerable reduction in the value of x. In such a 
situation, the particle-surface coupling may have only a minor 
effect on the properties of the system.

c) Many-Particle Configurations.

In the case of configurations involving several particles, the 
coupled system can be treated by methods similar to those dis­
cussed in the previous paragraph. While the surface coupling 
effects considered there may be described as nucleon self-energy 
Ford, 1953) from a comparison of the proper values of the strong coupling Hamil­
tonian with those of the uncoupled system. In the procedure employed, how­
ever, corrections to the vibrational energy (A. 108 and 113) of the same order as 
the rotational energies have been neglected. If these are included, the compa­
rison is somewhat more favourable to the strong coupling solution. 
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effects arising from the coupling to the phonon field, this coupling 
also produces mutual interactions between particles.

An additional feature which may affect the coupling scheme 
arises from the nuclear forces acting between the particles. The 
resultant coupling scheme will in general depend on a competition 
between the two effects. We first consider the surface coupling 
in the absence of direct forces between the particles.

i. Weak surface coupling.
For sufficiently weak coupling, one can employ the usual 

perturbation procedure of field theory to obtain effective two- 
particle interactions, resulting from the surface coupling. These 
interactions remove the degeneracy of many-particle configura­
tions and may thus be important in determining the ground 
state spin.

If and j2 of the particles are constants of motion, one may 

use a simplified form of /7int in terms of the operators j\ and 
-> 
j2 (A. 76, 77, 78), and one finds the two-body potential

V(l,2) = - 5 k2 1
64 n C j\ (ji + 1 ) j2 (j2 + 1 )

+ 3 (jij'2) — 2ji (j\ + 1 ) J2 O'2 + 1 )] •

[ 6(jij2)2 I
(11.28)

More general expressions may be derived if the surface introduces 
states with other j values. The interaction (28) is of the type 
well known from quadrupole couplings in atoms and molecules 
and is attractive if the two particles have parallel or antiparallel 
angular momenta and repulsive for perpendicular orientations. 
Since the coupling constant for a hole has opposite sign to that 
for a particle, two holes interact as given by (28), while a part­
icle and a hole have an interaction with opposite sign.

ii. Strong surface coupling.
For increasing coupling strengths, one obtains more compli­

cated two-body interactions in addition to many-particle inter­
actions. However, for strong coupling, the surface effect again 
becomes simple if viewed in the appropriate coordinate system. 
Under the combined action of the particles, the surface in general 
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acquires an equilibrium deformation of cylindrically symmetric 
character*; and, relatively to the deformed nucleus, the particles 
move independently of each other as long as the direct nuclear 
forces can be neglected.**

The wave function is of the type (15), where the particle 
state now stands for an appropriately antisymmetrized pro­
duct of individual particle wave functions, each characterized 
by a quantum number £?p. The total £? equals the sum of the 
individual £?p (cf. Fig. 6a). The symmetrization of the wave 
function follows the same lines as (15), except that the exponent j 
in the phase of the symmetrization term is replaced by y>'jp.

p
Corresponding to (21) and (26), the potential energy is given by

VM = Z«p + èc^-/ÎC0S’'2'A'py«^p)- <n-29> 

P z p

If not only the £?p, but also the jp, are good quantum numbers, 
simpler interaction terms of the type used in (21) replace the 
last term in (29).

We first consider a group of n equivalent particles with a 
definite j. If n is smaller than half the number of states in the 
shell, the equilibrium shape of the nucleus has y — n. The part-

* In special cases, an asymmetric equilibrium deformation may be favoured, 
or the potential energy surface may have no pronounced minimum in y. The 
quantities £?p and K are then no longer constants of the motion, and a more 
complex rotational spectrum arises (cf. the case of asymmetric molecules; cf. 
also Ap. 111.ii).

** The strong coupling solution for many-particle configurations has also been 
considered by Ford (1953).

Fig. 6. Coupling schemes for many-particle configurations. In many-particle con­
figurations, the coupling scheme results from a competition between surface 

coupling and particle forces. Two extreme cases are shown.
a) Surface coupling dominates over particle forces. The particles move inde­

pendently of each other in the deformed nucleus, each having a constant 
component Qp of angular momentum along the symmetry axis. The total Í? 
equals 27Qp and the nuclear ground state has I — K = . The figure

/>
illustrates the coupling scheme for a (/)3 configuration. The three lowest particle 
states have f2p — j, — j, j 1, leading to I — Q = j — 1.

b) Particle forces dominate over surface coupling. The particles arc coupled to
a resultant ./ which is then coupled to the surface as a single particle (cf. Fig. 3). 
The figure refers to a (/)3 configuration, where the particle forces in general fa­
vour the state J — j (cf. p. 34). The resultant ground state has I — = J = j.
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Fig.6 b.
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icles fill pairwise in states of opposite Qp; for n even, the ground 
state has Q = 0, while, for n odd, we get Í2 = j—1/2 (n— 1). 
If n is greater than j + 1/2, it is more convenient to consider the 
holes in the shell. The preferred shape now has y — 0, and one 
gets the same rules for £? of the ground state if n is replaced by 
the number of holes. In the special case of a half filled shell, 
the nucleus spends equal time around the positions y — 0 and 
y = n. For nuclei of this type, the total Hamiltonian is invariant 
with respect to a replacement of particles by holes together with 
the substitution k—k or y yti (self charge conjugate 
configurations).

If we have two groups a and b of equivalent particles, there 
is again in general a definite preference for either y — 0 or y = n. 
For an even group, the states are occupied pairwise with a 
resultant Qa = 0, while an odd group contributes a finite Qa. 
If both groups are odd, the energy (29) is degenerate, correspond­
ing to ß = | £?a ± |. In special cases, such as when one
group is obtained from the other by replacing particles by holes, 
the positions y = 0 and y = n may be equally preferred and 
the Hamiltonian possesses the same symmetry as discussed above.

The rotational contribution to W has the form

^=ä(K-ü)1+(ä+Ä)[/(z+1)-K!
+ DJ2 - ß2 - 2 Z) (A Z, + J2 Z2)],

(11.30)

—
where «Z = ¿ jp and where the operator I) picks out the part 

p
which is diagonal in the strong coupling representation (cf. 
Ford, 1953). The last term in (30) contributes only for con­
figurations with Q = K — 1/2 and if equivalent particles are 
filled pairwise with opposite the term is then equal to the 
last term of (24) for the remaining odd particle. Apart from this 
special case of Q = 1/2 the nuclear ground state has I — K = Q.

In odd-odd nuclei, there are, as mentioned above, two families 
of states with whose energies are degenerate
in first order. This degeneracy is removed by the rotational 
terms (30), and the ground state has I — K \ Qa — Qb\
in the limit of strong coupling.
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The validity of the strong coupling approximation depends 
on the magnitude of the total deformation, as compared with 
the zero point oscillations. Since the particles act coherently in 
producing the deformation, the effective coupling increases with 
the addition of particles until the next closed-shell configuration 
is approached. Thus, for two equivalent particles, the relevant 
parameter measuring the strength of the coupling is 2 x rather 
than x. The hydrodynamic estimate of the coupling strength for 
a single particle, given on p. 25, therefore implies a rather fully 
developed strong coupling situation in regions removed from 
closed shells.*

iii. Influence of particle forces.
The influence of nuclear two-body forces, with the neglect 

of surface coupling, has been considered for the (yy) coupling 
scheme along lines similar to those employed in atomic spectra 
(Mayer, 1950a; Kuratii, 1950, 1952, 1953; Flowers, 1952, 
1952a, 1952b; Edmonds and Flowers, 1952, 1952a; Talmi, 
1952; Hitchcock, 1952, 1952 a; Racah and Talmi, 1952). The 
choice of the forces is somewhat uncertain, since the present 
knowledge of the nuclear two-body system only partially defines 
the interaction. Moreover, the problem of nuclear saturation as 
well as the existence of shell regularities has raised the question 
whether these forces are appropriate to the description of inter­
actions of nucleons in nuclei (cf., e. g., Weisskopf, 1952). The 
analysis of coupling schemes for nuclear many-particle configur­
ations may provide evidence on these important questions.

The competition between the particle forces and the surface 
interactions determines the resultant nuclear coupling scheme. 
If the forces are weak compared to the coupling of the individual 
particles to the nuclear axis of deformation, the coupling scheme 
is that discussed in § Ilc.ii and illustrated by Fig. 6a. The effect 
of the particle forces is then to contribute a small energy shift 
which depends on the Qp quantum numbers. Such effects may 
be significant if there are near-lying states of different ¿2, such 
as in odd-odd nuclei.

* Numerical examples illustrating the improvement of the strong coupling 
approximation for several particles have been given by Ford (1953) (cf. also 
the footnote on p. 25—26).
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With increasing strength, the particle forces tend to destroy 
the above type of strong coupling solution by introducing non­
diagonal terms in the Qp and, if the particle forces and the sur­
face coupling are comparable, a rather complex situation may 
arise. For very strong forces, the particle structure is coupled to 

a resultant angular momentum J. This vector is then coupled 
to the surface in the same manner as a single particle (cf. Fig. 6b) 
with an effective coupling constant (cf. Table VIII)

T7=T JET Ap<3cosMp-l >Jz.j. (11.31) 

p

In this case, the nuclear ground state spin I = J is determined 
by the particle forces.

A simple comparison of the strength of the surface coupling 
relative to that of the particle forces is obtained by considering 
that the former results from the interaction of the nucleons with 
the total displaced matter of the nuclear deformation. While the 
particle forces may play an important role in light nuclei, the 
surface coupling should thus become increasingly dominant in 
heavier nuclei and especially for the large deformations encoun­
tered in regions removed from closed shells.



III. Ground State Spins.

The interpretation of ground state spins and parities is most 
unambiguous in regions with large separations between neigh­
bouring single-particle levels, where the lowest particle con­
figuration can be uniquely assigned. The ordering of levels within 
this configuration is determined by the forces acting between the 
particles and by their coupling to the surface (cf. § lie), and 
the observed ground state spin may give evidence on the result­
ing coupling scheme. The parity follows directly from the con­
figuration.

In regions with close-lying particle levels, the lowest state of 
the system may be affected by relatively small shifts in the con­
figuration energies, arising from surface or particle interactions,*  
as well as by configuration mixings produced by these interactions.

* Cf., e. g., the shell model pairing energy (Mayer, 1950a).
Dan.Mat.Fys.Medd. 27, no.16.

In the present chapter, we restrict ourselves to the problem of 
the lowest state for a given configuration. Some aspects of the 
configuration interactions are considered in connection with 
magnetic moments (cf. Addendum to Chapters IV and V) and 
level structures (§ VI b).

i. Single-particle configurations.
For a single-particle configuration, it follows from the con­

siderations in § IIb that, for the lowest state, I equals j of the 
particle, irrespective of the strength of the surface coupling. In­
deed, for this important class of nuclei, the observed spins and 
parities are successfully accounted for by the strong spin orbit 
coupling shell model (Mayer, 1950; Haxel, Jensen and Suess, 
1950).

3
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ii. Configurations of two equivalent particles. Even structures.
The calculations based on the assumption of attractive two- 

body forces have shown that such forces will couple two equi­
valent particles to a ground state of spin zero (Mayer, 1950 a; 
Flowers, 1952b; Edmonds and Flowers, 1952a; Racah and 
Talmi, 1952).

The same result is obtained for the influence of the surface 
coupling. In weak coupling, this effect may be considered in 
terms of equivalent two-body interactions given by (11.28), which 
favour the state I — 0. In strong coupling, the particles fill pair- 
wise in states of opposite £?p and the ground state has I — K = 
ß = 0.

Empirically, one has always found I = 0 for these configura­
tions, but the rule is far more general, applying to all even-even 
nuclei. For configurations involving only protons or neutrons, 
this result can be obtained for short range attractive forces 
(Mayer, 1950a; Flowers, 1952 b). It is apparent that the sur­
face, in strong coupling, leads to I = 0 quite generally for even­
even nuclei (cf. § II.ii).

Since, in the strong coupling picture, an even group of equi­
valent particles has no influence on the angular momentum 
properties of the nuclear ground state, aside from the tendency 
to favour prolate or oblate deformations, one has a certain basis 
for treating any odd-A nucleus in terms of the odd group of 
particles alone. Thus, if the odd group contains only a single 
particle (or hole) with an angular momentum j, one obtains the 
same ground state spin (/ = j) as for a single-particle configur­
ation (cf. § Ill.i). The observed spins of these nuclei have been 
found to be consistent with such a simplification of the model 
(Mayer, 1950; Haxel, Jensen and Suess, 1950). The possibility 
exists, however, that the even group of particles produces a 
deformation of the opposite shape to that preferred by the odd 
group and thereby affects the ground state spin.

iii. Configurations of three equivalent particles.
Several calculations have been carried out to determine the 

ground state spin resulting from two-body forces acting in (j)±3 
configurations (Mayer, 1950a; Kurath, 1950; Talmi, 1952; 
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Edmonds and Flowers, 1952 a; Flowers, 1952 a; Racaii and 
Talmi, 1952). These calculations have shown that, for suffici­
ently short range attractive forces, one obtains I = j for the 
ground state; when the range is no longer negligible compared 
to the nuclear radius, the ground state may have other spin 
values. The range at which cross-overs occur depends somewhat 
on the shape and exchange nature of the two-body potential.

For the (5/2)3 and (7/2)3 configurations, the state 1 = j — 1 will, 
for sufficiently long range forces, become the ground state, but 
the necessary range seems to be considerably in excess of that 
deduced from two-body data. For the (9/2)3 configurations, a 
ground state of 1=7/2 not only requires an excessively long 
range, but also a rather implausible exchange nature of the 
potential.

Thus, it appears that, for forces consistent with the known 
properties of the two-body system, the state I — j remains the 
ground state. It may be added that particle forces of sufficiently 
long range to produce cross-overs in the (j)3 configurations would 
also strongly affect the predicted ground state spins of other con­
figurations. In particular, high ground state spins may result for 
even-even nuclei, and the even group of particles no longer re­
mains inert with respect to the spins of odd-A nuclei (Edmonds 
and Flowers, 1952 a).

The effect of the surface coupling on the splitting of the 
(7)±3 configuration may be treated in weak and strong coupling. 
In the former case, the effective two-body interaction (11.28) can 
be shown to lead to a ground state spin of I = j for j = 5/2, 
7/2, and 9/2.

In strong coupling, however, three particles produce an 
oblate deformation and fill the three lowest levels = j, 
— j, j — 1, with a resultant Q = j — 1 and I = K = Q — j — 1 
for the ground state (cf. Fig. 6 a). For a (j)-3 configuration, a 
prolate deformation results with the same angular momentum 
quantum numbers as for (j)3. The special case of three j = 5/2 
particles, which constitute a half filled shell, possesses the sym­
metry in y discussed in § Ilc.ii, aside from the stabilizing in­
fluence of an even non-closed configuration.

Evidence on the level order for (J)±3 configurations has been 
obtained from spectroscopic measurements of ground state spins 

3* 
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and from the analysis of nuclear disintegration schemes. The 
observed spin for the lowest state within these configurations is 
given in Table I which shows that the values I = j and I — j — 1 
occur about equally frequently.

Table I. Lowest spins of (j)±3 configurations.

Nucleus Configuration ■^lowest

ioNeai (d5/2)3 3/2 g
nNa23 » 3/2 g

20Ca« (/7/2)3 7/2 g*
V5123 v ,, 7/2 g

25Mn65 (/7/2)-3 5/2 g

32Ge’8 tø9/2)3 7/2 *♦
3«Se” 7/2
3«Kr” 7/2 g

Sp81 34OC (09/2)_3 7/2
Kr833 6 1X1 9/2 g
Sr85 38Oi ,, 9/2 g
Tc9543 1 c (ff»/2)3 9/2 g
Te9743 1 c ,, 9/2 g

43TC«0 ,, 9/2 g
4,Ag1«7 tø»/2)-3 7/2
47Ag109 » 7/2

The table includes available evidence on the spin of the lowest state in(/)±3 
configurations in those regions where the configuration assignment is relatively 
unambiguous. This assignment, for the odd group of particles, is given in the 
second column, while the third column gives the observed spin of the lowest state 
of the configuration. The letter g indicates ground state of the nucleus. The spin 
values come from spectroscopic data (Mack, 1950) and from the analysis of decay 
schemes (Goldhaber and Hill, 1952), except where otherwise noted.

* Jeffries (1953) (added in proof). ** Smith et. al. (1952).

The empirical data may be interpreted in a straightforward 
manner by assuming that the surface coupling dominates over 
the particle interactions and produces a lowest spin I = j or 
I — j— 1, depending on the strength of the coupling. It is also 
possible that the occurrence of I — j reveals a significant in­
fluence of the particle forces (cf. Fig. 6b).

This interpretation would imply that I = j is more likely 
in regions near a closed shell in the even structure, while I = j — 1 
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would be preferred for more deformed nuclei. Such a trend is 
indeed discernible in the data. Thus, in the /7/2 shell, I = 7/2 
is observed for 2oCa43 and 23V51 with the closed-shell even struct­
ures, while the more deformed 25Mn65 gives I = 5/2. In the ^9/2 
shell, 7=7/2 is, for the odd-neutron nuclei, favoured for Z = 32, 
34, and 36, while I = 9/2 lies lowest for Z = 36 and 38, cor­
responding to the approach to the closed subshell at 38. For the 
odd-proton nuclei, I = 9/2 is favoured for N = 52, 54, and 56 
in the region of the closed shell at 50, while the more deformed 
nuclei with N = 60 and 62 have I — 7/2. Such trends could be 
tested in more detail if the separation between the 7=7/2 and 
7 = 9/2 levels were known for a sequence of isotopes or isotones.

In this discussion, the even structure has been considered 
only in its influence on the magnitude of the nuclear deformation. 
As mentioned on p. 34, more specific effects may occur if the 
even structure has a strong preference for a shape opposite to 
that produced by the odd structure. In those cases in Table I 
where the even configurations are sufficiently well known for 
such considerations, it is verified that no such anomalies are 
expected.

Evidence is also available on the level order for (g9/2)5 con­
figurations which are expected to occur for 45 particles. For 
the known nuclei of this type, the lowest state of the configuration 
has been found to be 7 = 7/2. No calculations have been reported 
on the effect of particle forces in these configurations. The weak 
coupling approximation of the effect of surface coupling has 
not been worked out either but, in the limit of strong coupling, 
the state I = 5/2 would be favoured. It seems not implausible 
that 7=7/2 could result from an intermediate coupling. Con­
siderable interest would attach to the location of the lowest 
(5/2 +) state.

iv. Odd-odd nuclei.
The ground state spins resulting from two-body forces have 

been considered for various types of odd-odd nuclei (Kurath, 
1952, 1953; Hitchcock, 1952, 1952a; Edmonds and Flowers, 
1952 a). The results appear to be more sensitive to the range 
and exchange nature of the forces than in the case of odd- 
A nuclei.
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The coupling scheme arising from the surface interaction can 
be derived from (11.28) for weak coupling and from the con­
siderations in § Ilc.ii for strong surface coupling. In the latter 
case, there are two families with Q = | Pprot ± Pneut |> whose 
energies differ only by amounts of the order of rotational energies. 
In the strong coupling limit, the ground state corresponds to 
the lower value, but the order may be altered by deviations 
from strong coupling or by even a minor influence of particle 
forces.

Table II. Spins of simple odd-odd nuclei.

Nucleus
Configuration

^obs r/weak \
1 \coupl.7

r ZstrongX
\coupl.7

protons neutrons

5B10 (P3/2) 1 (P3/2) 1 3 0 0,3
i7C138 ^3/2 2 2 1,2
17CI38 ^3/2 f 7/2 2 2 2,5
i.K“ (^3/2) 1 / 7/2 4 4 3,4
37Rb88 (/5/2)-1 tø»/2)~ 1 2 2 2,7

The table lists odd-odd nuclei whose proton and neutron configurations may 
be described in terms of a single particle or hole with j > 1/2. The observed spins, 
in column four, are taken from the references in Table XXI, except for Cl38 whose 
spin is derived from its observed beta spectrum (cf. Table XXXII).

The spins expected for weak and strong surface coupling are given in the 
two last columns. The weak coupling results coincide with those obtained for 
attractive spin-independent particle forces of zero range. For strong coupling, 
two values are listed, corresponding to the degenerate i2-values implied by (11.29) 
(_Q = I ßprot ± ßneut | )• The rotational energy (11.30) favours the smaller of the 
two spin values, but the relative position of the two states may be shifted by 
deviations from strong coupling or by even rather weak particle forces.

The measured spins of odd-odd nuclei with simple two- 
particle configurations are listed in Table II, which also gives the 
calculated values for weak and strong surface coupling.*  We 
have confined ourselves to regions of relatively pure configurations 
and have omitted nuclei for which one or both of the odd particles 
have j = 1/2. These latter particle states are affected by the sur-

* In the present discussion, we restrict ourselves to nuclei with A > 8, since 
the division into particle and collective degrees of freedom loses its significance 
for the very lightest nuclei. Moreover, for the light nuclei, the analysis is com­
plicated by the fact that the particle forces in general lead to a situation inter­
mediate between (//) and (LS) coupling (cf. Inglis, 1952).
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face only through their coupling to neighbouring states, and are 
also somewhat special as regards the effect of particle forces, 
since spin dependent interactions become decisive. For the cases 
in Table II, the ground state spin resulting from spin independent 
interactions of zero range (Kurath, 1952) coincide with the weak 
coupling values in column five. Results of other forces have been 
considered by the above mentioned authors.

It appears that both particle forces and surface interactions 
are capable of accounting for the data in Table II.*  An interesting 
feature is the empirical evidence for a different coupling of part­
icle-particle from that of particle-hole. This can be understood 
in terms of two-body forces of the Wigner or Majorana type 
(Kurath, 1953) and also follows from the opposite signs of the 
surface coupling associated with particles and holes.

* Note added in proof: A level scheme for 17C134 has recently been given 
(Arber and Stähelin, 1953), in which the ground state has I — 0 (even parity) 
and in which there appears an isomeric level at 145 keV with 7 = 3 (even 
parity). For weak surface coupling the lowest state of this (d3/2; d3/2) configu­
ration has 7 = 0, while for strong coupling one finds two states 7 = 0,3 with 
the former favoured by the rotational energy. Attractive particle forces of the 
expected range yield 7=3 for the ground state (Kurath, 1953).

Additional evidence on the ground state spins of self-mirrored odd-odd nuclei 
could provide further information on the competition between the direct particle 
forces and the coupling to the surface deformations, since the former in general 
favour 7 = 2/, while the latter gives 7 = 0 (cf., especially, 13AP’, 18K38, 21Sc42, 
and 27Co54).

The coupling scheme in some more complex odd-odd nuclei 
is considered in the Addendum to Chapters IV and V, in con­
nection with a discussion of nuclear moments.

V. Summary.
The ground state spin is determined in general by a competi­

tion between particle forces and surface coupling. Often the two 
effects favour the same value of I, but, especially in the case of 
(J)3 configurations, the predictions are different and the empirical 
evidence can be used to obtain information about the nuclear 
coupling scheme (cf. also footnote below).

The available data can be interpreted in a consistent manner 
in terms of the expected dominance of the surface coupling over 
the direct particle forces (cf. p. 32). The observed spins confirm 
the approach to the strong coupling scheme in regions removed 



40 III. Ground State Spins. Nr. 16

from closed shells, with a relatively weaker coupling acting in 
the neighbourhood of closed shells.

In the immediate vicinity of major closed shells, the expected 
weak surface coupling implies the most favourable conditions 
for the study of particle forces. Important evidence on the strength 
and nature of these forces could be provided by further experi­
mental data on ground state spins and moments in this region, 
especially when combined with a knowledge of the excitation 
spectrum and lifetimes of excited states (cf. § VIb).



IV. Magnetic Moments.

The sharing of angular momentum between particles and 
surface implies that both particle and surface motion contribute 
to the nuclear magnetic moment. Because of the large intrinsic 
moment of the nucleons, the particle aspect of nuclear moments 
is in general the more conspicuous, and indeed the empirical 
moments have provided a valuable guide in the formulation of 
the shell model (Schmidt, 1937; Feenberg and Hammack, 1949; 
Nordheim, 1949; Mayer, 1950; Haxel, Jensen and Suess, 1950).

In a more quantitative analysis, however, the surface coupling 
plays an important role. Appreciable shifts from the single­
particle values can arise from the modified nuclear coupling 
scheme produced by the surface interaction; additional effects 
result from the tendency of the surface coupling to admix near­
lying particle states, which may have very different magnetic 
properties (Foldy and Milford, 1950; A. Bohr, 1951; David­
son and Feenberg, 1953).

The analysis of magnetic moments may also provide evidence 
on the extent to which the magnetic properties of nucleons may 
be affected by their interaction with nuclear matter (cf., e. g., 
Villars, 1947; Sachs, 1948; Miyazawa, 1951a).

a) Shell Model Moments.

For a single particle moving in a spherical potential, the 
magnetic moment is given by

v = J9j = j\9i± YT+\(gs~ 7 = 1/2, (IV.l)

where is the total (/-factor and 

( 5.585 I
(—3.826 j9s = (IV.2)
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the intrinsic and orbital //-factors in units of nuclear magnetons. 
In the bracket, the upper values refer to a proton, the lower to 
a neutron.

Fig. 7. Magnetic moments of odd-proton nuclei. The moments of odd-proton nuclei 
with A > 8 are plotted against the nuclear spin. This type of diagram was first 
used by Schmidt (1937). The experimental values are taken from the references 
given in the Addendum. The full-drawn curves give the single-particle values 
(1 and 2), while the dotted curves give the moment values obtained in the limit 
of strong surface coupling, assuming the particle j to remain a constant of the 
motion (cf. (6) and Ap. III.9). The surface coupling may further influence the 
magnetic moment through the tendency to admix neighbouring particle orbitals. 
This effect, however, depends sensitively on the level order and the shape and 
magnitude of the deformation, and must therefore be considered separately for 

the individual nuclei (cf. Table VII and the Addendum).

The empirical moments for odd-A nuclei are plotted in Figs. 
7 and 8, in which also the single-particle values (1 and 2) are 
shown by the solid lines. In spite of the appreciable scatter of 
the empirical moments, they show a tendency to cluster in two 
groups, for given I, which can be related to the single-particle 
values. This correlation has been successfully employed in the 
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determination of nuclear parities (cf., e. g., Mayer, Moszkow- 
ski and Nordheim, 1951). Also the trends of the moments with I 
give support to the value (2) for the orbital ^-factor.

For many-particle configurations, the magnetic moment de­
pends on the coupling scheme which leads to the total angular 
momentum J. For a group of equivalent particles, one has, in

Fig. 8. Magnetic moments of odd-neutron nuclei. The moments of odd-neutron 
nuclei with A > 8 are plotted against the nuclear spin (cf. also the caption to 

Fig- 7).

the (jÿ) coupling model, gj = g¡, but changes in the ¿/-factor 
may arise for odd-A nuclei when the even structure is not a 
closed shell. In such cases, the nuclear state for a given J will 
in general depend on the interparticle forces; for three or five 
nucleons in J = 3/2 orbitals, the assumption of charge indepen­
dent forces, however, suffices to determine the nuclear wave 
function. The magnetic moments for these cases are listed in 
Table III. For odd-odd nuclei, the magnetic moment is in general 
unique only when the proton—as well as the neutron—configur­
ation is that of a single particle. By making more explicit as­
sumptions about the character of the forces, one can obtain 
magnetic moments for more complicated many-particle con­
figurations (Hitchcock, 1952; Flowers, 1952c).

A comparison of the shell model magnetic moments with the 
empirical data is given in Table IV. Nuclei are listed for which 
magnetic moments are known, and for which the (jj) coupling 
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Table III. Properties of charge symmetrized states of type 
0 ~ ^/2)j = 3/2 with T = 1/2.

Configuration Magnetic moments Quadrupole 
moments

Mirror
/3-decay

protons neutrons Pj

(P3/d±1 (P3/2)2 3.79 3.03 T 11/15 121/225
(Pí/z)2 (P3/2)±1 — 1.91 —.1.15 T 2/3 121/225
(d3/a)±1 (d3/.)2 0.12 0.26 T 11/15 121/225
(d3/2)2 (d3/2)±' 1.15 1.01 T 2/3 121/225

The table compares magnetic moments, quadrupole moments, and /5-decay 
transition probabilities for the charge symmetrized state J with the corresponding 
quantities for the single-particle state /. Magnetic moments have been given by 
Mizushima and Umezawa (1952), quadrupole moments by Horie and Yoshida 
(1951) and Flowers (1952c), and /?-decay matrix elements by Kofoed-Hansen 
and Winther (1952).

shell model provides a unique prediction //p. It is seen that, in 
most cases, the deviations from /zp are of the order of a half to 
one magneton. The cases of agreement between /zp and //obs are 
principally the p1/2-nuclei and the self-mirrored odd-odd nuclei 
(cf. pp. 67 and 81).

b) Moments of the Coupled System.

For the coupled system consisting of a single particle and 
the nuclear surface, the magnetic moment is given by

p = < gssz + gtlz + gRRz >M = i (IV.3)

where gR is the ^-factor for the angular momentum carried by 
the surface. For a uniformly charged nucleus, we have*

gR — Z/A. (IV.4)

If j remains a good quantum number, (3) reduces to

g = <g¡Jz + gR^>M=i

= g¡i~(g¡ — gj<) <i-
(IV.5)

* In the discussion of the empirical data we employ for simplicity the fixed 
value gR = 0.45, except for the self-mirrored odd-odd nuclei for which g^ = 0.5. 



Nr. 16 IV. Magnetic Moments. 45

Table IV. Comparison of magnetic moments with shell 
model values.

Nucleus
Configurations

I Pobs Pp
protons neutrons

4Be8 (P3/î)2 (P3/2) 1 3/2 — 1.18 — 1.15
5b10 (P3/î)_1 (P3/2) 1 3 1.80 1.88
5bu (P3/2) 1 — 3/2 2.69 3.79
6C1S — Pl/2 1/2 0.70 0.64
7N14 Pl/1 P1/2 1 0.40 0.37
7n15 P1/2 — 1/2 — 0.28 — 0.26
8o17 — ^5/2 5/2 — 1.89 — 1.91
pi 99r Sl/2 — 1/2 2.63 2.79

xlNa22 (d5/2)3 (d5/i)3 3 1.75 1.73
13ai27 (^5/2) 1 — 5/2 3.64 4.79
14Si28 — S 1/2 1/2 — 0.56 — 1.91
15P31 Sl/2 — 1/2 1.13 2.79

Q33 16° — if 3/2 3/2 0.64 1.15
17C188 if 3/2 (ifs/2)3 3/2 0.82 0.26
17C137 if 3/2 — 3/2 0.68 0.12
1A38 (if 3/2)-1 — 3/2 0.39 0.12
i«*40 (ÍÍ3/2)-1 f l/2 4 — 1.30 — 1.68

V6123 v (/7/2)3 — 7/2 5.15 5.79
37Rb8a (/./i)"1 (^9/2) 1 2 — 1.69 — 2.13
3,Rb97 (Pâ/î)“1 — 3/2 2.75 3.79
38Sr87 — (9’9/2) 1 9/2 — 1.1 — 1.91

V8939 1 P1/2 — 1/2 — 0.14 — 0.26
4oZr81 — if 0/2 5/2 — 1.1 — 1.9.1
82Pb207 — Pl/2 1/2 0.59 0.64
83Bi208 hø/2 — 9/2 4.08 2.62

The table lists the nuclei with measured magnetic moments, for which the 
shell model yields unique /z-values, without specific assumptions about the nuclear 
forces other than charge independence. For references to the empirical data, cf. 
Addendum to Chapters IV and V. The odd-A nuclei are single-particle configur­
ations, except for Be8 and Cl35 for which cf. Table III. The odd-odd nuclei mostly 
have two-particle configurations, in which case the measured spin uniquely deter­
mines the state. For Na22 the total ¿/-factor follows from the symmetry of the 
configuration, even though .the state is not unique.

For the ground state with I = j, the dependence of < Rz > on 
the coupling strength has been discussed in § IIb and is illu­
strated in Fig. 5. In the limit of large x, we get from (11.20), for 
/ =j > 3/2, the strong coupling value (cf. A. Boiir, 1951) 

9c Psp (f/j 9r) y I I ' (IV.6)
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For I — j = 3/2, the limiting value //c differs somewhat from (6) 
(cf. Ap. III.9); for I = j = 1/2, there is no coupling to the sur­
face and /¿ = /zsp.

The values of [ic for j a constant (J — I) are plotted as dotted 
lines in Figs. 7 and 8.

If there are neighbouring single-particle states j', which are 
admixed by the surface coupling, the magnetic moment may be 
strongly influenced. In the perturbation approximation, one 
obtains from (Ap. II.3 and 4)

P' ACp

+ <-«//' <97-9n) + ft,- (S'/--Sr)} ■ 
(IV.7)

where the coefficients « and ß are given in Table V, and where 
Ajj, represents the spacing between the particle states j and j'.

Table V. Coefficients in magnetic moment shifts produced 
by weak surface coupling.

7
/' = /—2 /' = 7 — 1 i' = i r = / + i i' = 7 + 2

a ß a ß a ß a ß a ß

1 1 3 71/2 _ _ _ __ __ _
5 5 10 10

9 9 18 27 117 81 7293/2 _ __ _ _
10 50 25 70 350 35 175

5 1 5 13 48 10 74 125 1375
o j 2 2 7 49 49 21 147 21 147

7/2 63 27 7 37 10 35 115 245 3185
10 10 10 90 9 66 198 22 198

9/2 81 45 54 414 144 81 981 5103 76545
7 7 77 847 121 143 1573 286 3146

The magnetic moment shift in a state I — j, arising from the sharing of 
angular momentum between the particle and the surface, and from the admixture 
of neighbouring orbitals j', is given in the weak coupling region by (IV.7). The 
table lists the coefficients a^,, and ß-,, occurring in this equation.

If the surface admixes the spin orbit partner, there is an 
additional contribution to it from cross terms in j, j’ giving (cf. 
Ap. II.5)
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ó// = ± x2 (gs 3 (2/ —l)(2j'+3)
Vz74(2Z+1) O'+l)2

1 (IV.8)

where the upper and lower signs refer to the cases of a particle 
and a hole, respectively.

In strong coupling, the magnetic moment of a state with 
I = K = £) > 3/2 is given by

where
/Zc Z+l^ + 7+l ’̂

1
0ß = ^<^s3 + ^Z3>

(IV.9)

(IV.10)

is the (/-factor associated with the particle motion in the deformed 
nucleus and can be evaluated for wave functions of the type 
discussed in § II b.

For the special case of ß = K = 1/2, the value of //c is most 
easily obtained from (3) by means of the expectation values of 
jz, given by (11.19), and of sz given by (Ap. III.2).

For many-particle configurations, magnetic moments can be 
derived for the different coupling schemes discussed in § lie. 
In the strong coupling scheme, in which the state is characterized 
by the ßp of the individual particles (cf. Fig. 6 a), formula (9) 
still holds where, for odd-A nuclei, is the g-factor for the last 
odd particle. For odd-odd nuclei, we have

Í7p ß ^b9b) • (IV.ll)

If the nuclear forces first couple the particle to a resultant J 
(cf. Fig. 6 b), the magnetic moment is obtained as for a single 
particle with a ^-factor equal to gj.

c) Comparison with Empirical Data.

A detailed application of the coupled model to the inter­
pretation of moments of individual nuclei is given in the Ad- 
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dendum to Chapters IV and V. In the present section, we con­
sider some of the general trends of the empirical data and 
summarize the conclusions that can be drawn from the more 
detailed analysis.

The surface coupling may affect the magnetic moment in 
two ways, by the transfer of angular momentum to the surface

Table VI. Magnetic moments in strong coupling.

Nucleus
Configuration

I Pobs Pc Pp
protons neutrons

4Be9 (P3/2)2 (P3/2) 1 3/2 — 1.18 —0.73 — 1.15
5bu (P3/î)_1 3/2 2.69 2.37 3.79

8O17 — ^b/2 5/2 — 1.89 — 1.04 — 1.91
i2Mg25 (d6/.)"2 (d./.)"1 5/2 — 0.86 — 1.04
1.A1« — 5/2 3.64 3.75 4.79

2iSc« fill (/7/>)4 7/2 4.76 4.86
..Ti« (fi/2) 1 7/2 — 1.10 — 1.14
27Co57 (/T/.)-1 (P3/2» /5/2)2 7/2 4.6 4.86
27Co59 (Í7/.)"1 (P3/2» fb/2)i 7/2 4.65 4.86

38Sr87 — (99/2) 1 9/2 -1.1 — 1.20 -1.91
41Nb93 99/2 (<ts/2> 9t/2^2 9/2 6.17 5.93
48In113 (99/2) 1 (^5/2» fZ7/2> ^H/2)14 9/2 5.49 5.93
«In11« (99/2) 1 (^5/2» 91 / 2* ^n/2)1# 9/2 5.50 5.93

The table lists the relatively simple nuclei whose odd structure is of (J) ± 1 
type with a / larger than that of neighbouring orbitals. The last three columns 
give the observed moments, those calculated for strong surface coupling, and 
those resulting from particle forces with the neglect of surface coupling. The 
latter are only listed where the particle forces lead to a unique coupling scheme. 
For reference to experimental data, cf. the Addendum.

and by the admixture of near-lying particle orbitals. In a special 
class of nuclei, the former effect can be studied alone, provided 
the coupling is strong. Thus, if the odd-particle j is the largest 
in the corresponding shell, the strong coupling solution with 
Q = j will have no other orbitals admixed.

Nuclei of this type, whose odd configuration consists of a 
single particle or a single hole, are listed in Table VI. The three 
last columns give the empirical moments and those calculated 
for strong and vanishing surface coupling.
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It is seen that the assumption of a rather strong surface 
coupling makes possible an approximate interpretation of these 
moments. The principal exception is 8O17, for which many prop­
erties attest the expected undeformability of the very stable 8O16 
core (cf. § Vc). In some cases, the magnitude of /tobs is a few 
tenths of a magneton below that of pc, which may possibly arise 
from an interaction effect on the nucleon moment (cf. p. 51).

The rather fully developed strong coupling situation indicated 
by the empirical values in Table VI implies, according to (5) 
and Fig. 5, that coupling strengths of x > 1.5 are required if 
the nuclei are described in terms of a single particle coupled to 
the surface. Such values of x are somewhat larger, by about a 
factor two, than those estimated for a single particle in the hydro­
dynamic approximation (cf. p. 25), but may be understood in 
terms of the increased coupling expected from the influence of 
the even structures (cf. p. 31). In cases where an even structure, 
for a spherical nucleus, would form a closed sub-shell, it may 
still be active, provided the energy gap to the next higher levels 
is not too large (cf. Ap. I).

A similar effect on the magnetic moment is expected for all 
nuclei with I> 3/2, and the strong coupling value /zc (cf. 6 and 
Ap. III.9) corresponding to j = I is plotted in Figs. 7 and 8 as 
broken lines. However, for nuclei other than those listed in 
Table VI, there are additional contributions to /z, arising from 
the interaction between neighbouring particle orbitals.

This effect is of special interest for 7=1/2 nuclei, where it 
provides a mechanism for strong surface coupling. Thus, for 
(1/2+) nuclei, the strong interaction between s1/2 and the d5/2 and 
d3/2 states may lead to a large deformation. The effect on the 
moment depends especially on the sign of the deformation (cf. 
Fig. 11). Thus, the expected prolate shape of F19 leads to a very 
small moment shift, while the expected oblate shape of Si29 and 
P31 explains the observed large deviations of the moment from 
that of a single-particle s1/2 state (cf. Ad. i).

For the (1/2—) nuclei, the admixed states have relatively little 
effect on the moment. In the first p-shell, the large p1/2 —p^z 
splitting in addition leads to rather small amplitudes of admix­
ture. In higher p-shells, there is a considerable tendency for the 
moment deviations, caused by the p3/2 and f^2 admixtures, to 
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cancel, which provides an understanding of the strikingly small 
spread of the moments of this group (cf. Ad. ii).

Another effect of the interconfiguration admixtures can be 
studied for the (3/2+) nuclei. Due to the d3/2 —dà/2 interference, 
the magnetic moment depends, as for the (1/2+) nuclei, on the 
sign of the deformation (cf. Fig. 12) and thus distinguishes be-

Table VII. Summary of magnetic moments for A < 50.

Nucleus
Configurations

I Pobs Pp Pc
protons neutrons

4 Be® (P3/2)2 (P3/2)“1 3/2 — 1.18 -1.15 — 0.7
5b10 (P3/2)_1 (P3/2) 1 3 1.80 1.88 1.79
5Bu (P3/2) 1 — 3/2 2.69 3.79 2.3
ris — P1/2 1/2 0.70 0.64 0.64 to 0.75

,N14 P1/2 P1/2 1 0.40 0.37 0.40 to 0.47
7N16 P1/2 — 1/2 — 0.28 -0.26 — 0.27 to -0.41
8O17 — +/2 5/2 — 1.89 -1.91 — 1.04
flF19 Sl/2 — 1/2 2.63 2.79 2.5 to 2.8

nNa22 (d5/2)3 (d6/2)3 3 1.75 1.73 1.71 to 1.78
lxNa23 (d5/s)3 (d5/2)"2 3/2 2.22 2.2 to 2.5
xlNa24 (d5/2)3 (+/2)-1 4 1.69 1.4 to 1.8
12Mg25 ( + /2)“2 (rfs/2)-1 5/2 — 0.86 — 1.04
isAl” (+/2)-1 — 5/2 3.64 4.79 3.75
i4Si29 — S 1/2 1/2 — 0.56 — 1.91 — 1.2 to —0.6
i8P31 S 1/2 — 1/2 1.13 2.79 1.9 to 1.2

Q3316° — ^3/2 3/2 0.64 1.15 0.8 to 0.2
17CP® ^3/2 (d3/2)2 3/2 0.82 0.26 0.5 to 1.2
17C187 +/2 — 3/2 0.68 0.12 0.5 to 1.2
19K39 GM"1 — 3/2 0.39 0.12 0.3 to —0.1
i9K*° (^3/2) 1 / 7/2 4 — 1.30 -1.68 — 1.0 to —0.3
i.K« (+/2)-1 (f?/i)2 3/2 0.22 0.3 to —0.1
i.K42 (^3/2) 1 (Z^)’ 2 — 1.14 — 0.7 to —0.9
21SC45 / 7/2 (J7/2)* 7/2 4.76 4.86
22TÍ4® (/,/2)2 (/7/2) 1 7/2 — 1.10 — 1.14

The table compares the observed magnetic moment /zobs with the moment 
given by the shell model, with neglect of surface coupling, and the moment /i£ 
obtained for strong surface coupling. The value of /¿p is given only where it is 
independent of special assumptions about the nuclear forces. In cases where the 
strong coupling state contains several values of /, the moment may be rather 
sensitive to the equilibrium value of ß, and the values given for /¿c correspond to 
deformations in the range 0.1 < ß< 0.4. For a more detailed discussion of and 
for references to the empirical data, cf. the Addendum. 
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tween particles and holes. Such differences are indeed apparent 
in the empirical data (cf. Table XIV).

Further effects of the interaction of neighbouring particle 
states are discussed in the Addendum. The states often have very 
different magnetic moments, and their interaction may lead to 
large moment shifts.

The analysis of magnetic moments for nuclei with A < 50 
is summarized in Table VII. The table compares the observed 
moments with those calculated for vanishing and strong surface 
coupling (columns six and seven, respectively). In those cases 
where the strong coupling state contains particle orbitals of 
different j, the magnetic moment may depend rather sensitively 
on the magnitude of the deformation, and the table lists moments 
appropriate to deformations in the range 0.1 < ß < 0.4. The 
expected values of ß vary considerably from nucleus to nucleus, 
and estimates of values appropriate to the individual nuclei are 
given in the Addendum.

It is seen from the data collected in Tables VI and VII, and 
from the discussion in the Addendum, that the unified descript­
ion of the nucleus, in terms of the coupled system of particles 
and collective oscillations, makes possible a rather systematic 
interpretation of the magnetic moments of nuclei with sufficiently 
simple configurations. The empirical data give evidence for the 
expected approach to the strong coupling scheme, except in the 
immediate vicinity of major closed shells.

An interpretation is also possible of the moments of many 
heavier nuclei not included in Tables VI and VII, wherever the 
configurations are sufficiently well known (cf. the Addendum). 
An important anomaly is the as yet unexplained large moment 
shift of 83Bi209 with its single-particle configuration. The stability 
of the 82Pb208 core with its closed-shell structure implies a rather 
negligible effect of the- surface coupling, as confirmed by the 
small quadrupole moment. The observed moment shift thus prob­
ably reflects some unexpected feature of the particle structure.

Besides the contributions to the nuclear magnetic moment 
from the individual particles and from the surface, there may be 
an additional effect arising from the interaction of the nucleons. 
Such interaction effects have been described as exchange mag­
netic moments, and have sometimes been considered as a partial 

4* 
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quenching of the meson cloud responsible for the nucleon mo­
ments (Villars, 1947; Sachs, 1948; Osborn and Foldy, 1950; 
Spruch, 1950; Miyazawa, 1951, 1951 a; Bloch, 1951; de-Shalit, 
1951; Schiff, 1951; Jensen and Mayer, 1952; Russek and 
Spruch, 1952; Ross, 1952).

It is of interest to employ the analysis of the empirical mo­
ments to obtain evidence on the possible magnitude of these 
phenomena. In the j = I— 1/2 nuclei, there are small residual 
moment shifts which may perhaps be interpreted as arising from 
interaction effects. For the pí¡.¿ and d3/2 configurations, the data 
are consistent with a reduction of the intrinsic nucleon moment 
by about 0.3 magnetons (cf. pp. 69 and 74). Somewhat larger 
effects may be present in the Zö/2 and possibly also in the g7/2 
nuclei (cf. pp. 78 og 79). It seems somewhat difficult, however, 
to interpret the moment shift of Bi209 (/i9/2) in this way, since 
an effect five times larger would be required (cf. p. 81). The 
moments of the j — I-]- 1/2 nuclei, with the exception of O17, do 
not seem inconsistent with a reduction of the nucleon moment 
by a few tenths of a magneton (cf. Table VI).

That interaction contributions to the moment are in general 
small compared to the effects of the surface coupling is further 
supported by the correlations of magnetic moments with quadru­
pole moments (cf. p. 70) and especially with beta decay fl- 
values. Thus, for all the nuclei in Table VII with Z = N— 1, 
for which there are major discrepancies between //obs and pp, 
the /’/-values of the corresponding mirror transitions give strong 
evidence that these discrepancies are associated with modifications 
in the nuclear coupling scheme rather than in the intrinsic nu­
cleon moments (cf. § VIII c.i). In these cases, the coupled model 
simultaneously improves the agreement with both the magnetic 
moments and the beta decay data (cf. Table XXIX).



V. Quadrupole Moments.

The magnitude of the electric quadrupole moments reveals 
directly their collective origin (Casimir, 1936). At the same time, 
the trends are strongly correlated with the nuclear shell structure 
(Gordy, 1949; Hill, 1949; Townes, Foley and Low, 1949; 
Rosenfeld, 1951). These dual aspects of the quadrupole mo­
ments find their explanation in the coupling between the particle 
motion and the surface deformations (Rainwater, 1950).

The importance of the deformations for the whole dynamics 
of nuclear states implies intimate correlations between quadru­
pole moments and many other nuclear properties.

a) Shell Model Moments.

A single proton contributes a quadrupole moment

Q,= <r2(3cos^-l)>„,_,. = (V.l)

where the mean value of r2, although depending somewhat on 
n and /, is of the order of 3/5 Rq. A single hole in a proton 
shell yields a quadrupole moment equal to (1), but of opposite 
sign. For a single-neutron state, the quadrupole moment comes 
only from the recoil and is Z/A2 times the above value.

For configurations with several equivalent protons coupling 
to a total J, the quadrupole moment is usually somewhat smaller 
than the single-particle value. Examples of such configurations 
are listed in Table VIII. For configurations involving both neu­
trons and protons, the values of Qj are given in Table III for 
those configurations which lead to unique charge symmetrized 
wave functions.
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Table VIII. Quadrupole moments for (J)3 proton configurations.
I

.7 ' <')’ (5/2)3 (7/2)3 (9/2P

3/2 0 -3/5 -1/5
5/2 0 13/14 — 1/42
7/2 1/3 121/90 

f +0.58 
j —0.739/2 0 — 5/11

11/2 5/49 2/39
13/2 11/60
15/2 5/7 — 7/102
17/2 7/15
21/2 7/6

The table lists the ratio of the quadrupole moment Qj of the state (/)j to 
the value of Q- (cf. V.l). The configuration (9/2)3 has two states with J = 9/2 
and the quadrupole moments listed are the extreme values obtainable by com­
bination of the two states. From the values of Qj one can also calculate the 
effective particle-surface coupling constants kj given by (11.31).

In Fig. 9 are plotted the measured quadrupole moments of 
odd-A nuclei in units of | Q¡\. In the case of odd-neutron nuclei, 
the value of | Q¡ | for a corresponding proton is used as a unit. 
The most conspicuous feature of the figure is the magnitude of 
I Q/Qj I which, in most cases, exceeds 2 and which, in some 
regions, reaches values of 20 or more. Moreover, odd-neutron 
nuclei have Q-values comparable to those of corresponding odd­
proton nuclei. Shell structure is also apparent in Fig. 9, especially 
in the expected change from positive to negative Q at the major 
shell closings.

b) Moments of the Coupled System.

In the coupled model, the total nuclear quadrupole moment 
becomes

Q = Q„ + Qs O'.2)

of which the first part is associated with the particle structure. 
The second part is due to the surface deformation and is given by
(cf. II.2)

Qs — 777= ^0 < «0 > M = I (V.3)
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units of the moment Q¡ of a single-proton state with j = I (of. (1)), are plotted 
for odd-A nuclei with A > 8 as a function of Z (odd-proton nuclei) or N (odd­
neutron nuclei). Similar diagrams have been given by Gordy (1949) and by 
Townes, Foley and Low (1949). The experimental data are taken from the 

references given in the Addendum.

in the hydrodynamic approximation, where the nucleus is con­
sidered as an incompressible uniformly charged structure.

Quadrupole moments can be obtained from the various
solutions of the coupled system considered in § IIb and § lie. 
Thus, in first order perturbation approximation, the value of 
Qs induced by a single particle may be found from (11.9) and 
(V.3) by considering only the <z0-part of the interaction. The 
matrix elements of «0 and To are given by (A. 38, 76, 77, and 78) 
and one obtains

3 27—1 k
4 ti 2(7+1) C (V.4)

The presence of near-lying single-particle levels does not in­
fluence this result to first order in k.
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In strong coupling, we have (cf. A. 11 and 12)

«o = /? cos y (V.5)

For the wave function (11.15), only the first term in (5) contri­
butes to Qs, and one obtains

where

_ 3^-7(7+l)
(Z+1) (2/4-3) Vo’

Qo = -J- < ß cos y >
y 5

(V.6)

(V.7)

gives the intrinsic quadrupole moment, measured with respect to 
the nuclear axis (cf. (Ap. III. 10) for the special case of / = 3/2).

In the limit of strong coupling, we may replace ß and y by 
their equilibrium values. From the estimate (11.22) for ß we 
get, for the ground state, I = K = Í2; y = tn, (cf. Feenberg and 
Hammack, 1951; Gallone and Salvetti, 1951, 1951a)

Qo =
3 27-1 k 2
4% 2 (74-1) C 0 (V.8)

for the intrinsic quadrupole moment. This result is just equal 
to the perturbation value (4) for the total surface moment.

The factor preceding Qo in (6) is a projection factor Pq 
relating the quadrupole moment of a given rotational state of a 
symmetric top to its intrinsic moment. For the ground state, 
I — K, its value is (cf. A. Bohr, 1951)

Pq 74-1 27+3‘ (V.9)

In a similar way, the contribution of the particles in strong 
coupling is reduced by the factor Pq. The significance of Pq is 
apparent for states of 7 = 0 or 1/2, where the nucleus, although 
it may possess an intrinsic asymmetry Qo, exhibits a spherically 
symmetric charge distribution (Q = 0).

In intermediate coupling, it is convenient to write the quadru­
pole moment as 

Qs = Pq(x)Q„ (V.10)



Nr. 16 V. Quadrupole Moments. 57

where Qo is given by (8) for a one-particle configuration with 
j = I. The projection factor PQ(æ) is then unity for a? « 1 and 
approaches the value (9) for æ» 1.

The behaviour of the quadrupole moment for intermediate 
coupling may be studied for the case I = j — 3/2 by means of 
the wave function illustrated in Fig. 4. Moreover, from the 
solution of the coupled system valid for I = j » 1 (cf. Ap. IV), 
one obtains

P0(x) 1 3(/+1)(2/+3) / 4

p +9
(V.ll)

correct to terms of order I-1.
The gradual transition from weak to strong coupling is il­

lustrated in Fig. 10.

Fig. 10. Projection, factor for quadrupole moments in the coupled system. The modi­
fication in the nuclear coupling scheme, arising from the interaction of the particle 
with the surface, implies a reduction in the surface quadrupole moment, as com­
pared with that induced by a particle with m- = j. This reduction is expressed 
by the projection factor Pq (x) (cf. (10)) which depends on the coupling strength 
x (cf. (11.14)). For weak coupling (x(( 1), Pq m 1 while, in the limit of strong 
coupling, Pq approaches the value (9) for j > 3/2. In strong coupling, the particle 
has ¿2 — / (cf. Fig. 3) and thus induces the full quadrupole moment with respect 
to the nuclear coordinate system. The projection factor Pq then gives the reduction 
of this intrinsic quadrupole moment Qo caused by the deviation of the nuclear 
axis from the fixed z-axis.

The figure illustrates the gradual development of the projection factor for 
j))l (cf. (11) and Ap. IV) and for / = 3/2 (obtained from Fig. 4). The strong 
coupling solution for j = 3/2 discussed in Ap. Ill.ii indicates that the curve for 
j = 3/2 may approach a value somewhat in excess of unity, for large x.
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c) Discussion of Empirical Data.

The coupling between particle motion and surface deforma­
tions provides a mechanism capable of producing nuclear quadru­
pole moments of the observed order of magnitude (Rainwater, 
1950). In this way, one can account for important trends in the 
empirical data, in particular the rapid increase of quadrupole 
moments with A, and the comparable magnitudes of moments 
of neighbouring odd-proton and odd-neutron nuclei. Also the 
increase of the moments, as one moves away from closed-shell 
configurations, which leads to maximum values in the middle 
of shells, is a direct consequence of the increase in the coupling 
associated with many-particle configurations (cf. § Ilc.ii).*

The empirical quadrupole moments provide valuable evi­
dence on the nuclear deformability and its dependence on shell 
structure. Thus, it is found that closed-shell nuclei, as expected 
(cf. Ap. I), possess a much greater stability against surface 
deformations than is indicated by the hydrodynamic surface 
tension. For both 8O17 and ggBi209, the empirical quadrupole 
moments are of the order of the single-particle moments and 
more than ten times smaller than the values estimated from the 
surface deformation.

The interpretation of these moments as reflecting a sharply 
decreased deformability is supported by other evidence. Thus, 
the first excited state of 82Pb208 has an energy about twice the 
hydrodynamical phonon energy, and the first excited state of 
8O17 has the anomalous (0+) character (cf. § VIc.i). Moreover, 
the magnetic moment of 8O17 is very close to the single-particle 
value; in this respect, 83Bi209 forms an exception, exhibiting a 
large moment shift of still unexplained origin (cf. p. 81).

The quantitative estimate of quadrupole moments depends 
sensitively on the assumed surface properties as well as on the 
details of the particle configuration. However, even a rather 
crude analysis of the empirical data reveals significant short­
comings of the hydrodynamical model. Thus, for nuclei whose

* Pfirsch (1952) has discussed the trends of quadrupole moments, but 
it appears that the states considered do not in general represent nuclear ground 
states, both because Q I and because the chosen configurations do not fill 
the lowest particle orbitals.
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odd structure is that of a single particle, it is found that the 
hydrodynamical estimate of the quadrupole moment produced 
by this single particle, with neglect of the deforming influence of 
the even structure, is already considerably in excess of the ob­
served value.

The comparison*  is shown in Table IX. The values of Qo, 
listed in column five, are obtained from (8), using the deform­
abilities of Fig. 1. For a single-particle configuration, the hydro­
dynamical estimate leads to an intermediate coupling situation 
(cf. p. 25), and the values of the projection factor Pq(x}, in 
column seven, are therefore not the full strong coupling values 
(9), but have, been estimated from Fig. 10.**  The resultant 
Qhvdr in the next to last column includes the contribution from 
the particle moment listed in column eight.

* A comparison of empirical quadrupole moments with those induced by a 
single particle has been given by van Wageningen and de Boer (1952). These 
authors find similar Q0-values to those listed in Table IX, but have used the 
limiting values (9) for Pq and thereby obtained appreciably smaller values for 
Q, than those resulting from the consistent one-particle hydrodynamical ap­
proximation employed in Table IX.

** Note added in proof: The projection factors employed in Table IX are 
in agreement with the recent, more detailed, intermediate coupling calculations 
by D. C. Choudhury (cf. footnote on p. 24).

The assumption of a single-particle configuration with a 
constant j in most cases considerably underestimates the deform­
ation ; thus, the interaction of neighbouring particle orbitals may 
increase the coupling strength, and the even structures also in 
general contribute to the deformation. The resulting approach to 
the strong coupling scheme, which is also indicated by many 
other nuclear properties, at the same time implies a decrease in 
the projection factor.

In spite of the difficulty of a detailed estimate of these effects, 
it seems clear from the comparison in Table IX that the hydro­
dynamical values of Q are in general larger than the empirical 
ones by at least a factor two.

This deficiency of the hydrodynamical model is consistently 
exhibited by all nuclear properties related to quadrupole mo­
ments (cf. § VIc.ii and also p. 75), and gives an important indi­
cation as to how the collective properties of the nucleus differ 
from those of an idealized liquid drop. It seems most likely that
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Table IX. Comparison of quadrupole moments with hydro­
dynamic estimates.

Nucleus
Configuration

I Qo X P0(x) Qsp Qhydr Qobs
protons neutrons

sB11 (P3/2) 1 3/2 + 0.07 0.71 0.7 + 0.023 + 0.06 + 0.06
8o17 — ^5/2 5/2 — 0.20 0.56 0.8 — 0.0013 — 0.16 — 0.005

isAP’ (^s/2) 1 — 5/2 + 0.32 0.56 0.8 + 0.065 + 0.30 + 0.16
Q33 — ^3/2 3/2 — 0.31 0.73 0.7 0 — 0.22 — 0.08
C3516ö — (¿3/2)-1 3/2 + 0.31 0.73 0.7 0 + 0.22 + 0.06

17CF5 ^3/2 (¿3/«)’ 3/2 — 0.32 0.73 0.7 — 0.055 — 0.26 — 0.084
i,Cl3’ ^3/2 — 3/2 — 0.32 0.73 0.7 — 0.055 — 0.26 — 0.066
!9Cu33 P3/2 (Ps/a* /s/a) 4 3/2 — 0.61 0.76 0.7 — 0.08 — 0.48 — 0.13
29Cu85 Ps/2 (P3/2» f i/2) 2 3/2 — 0.61 0.76 0.7 — 0.08 — 0.48 — 0.12
3iGa#B (P3/2)-1 — 3/2 + 0.67 0.77 0.7 + 0.08 + 0.53 + 0.24
3iGa’x (P3/2) 1 — 3/2 + 0.67 0.77 0.7 + 0.08 + 0.53 + 0.15
3aGe” (Ps/2, f s/2)4 9 »/ 2 9/2 — 1.3 0.45 0.9 0 — 1.2 — 0.2
49ln113 (9 9/i) 1 (^5/2» .97/2» ^n/2)14 9/2 + 2.4 0.51 0.9 + 0.21 + 2.4 + 1.18
49mns (99/a) 1 (^5/2’ ?7/2> ^U/2)18 9/2 + 2.4 0.51 0.9 + 0.21 + 2.4 + 1.20
5iSb“i ^5/2 (^s/2> 97/2, ^n/2)20 5/2 — 2.1 0.68 0.7 — 0.17 — 1.5 — 1.0
51Sb123 91/î (^5/2> 9t/2’ ^11/a)22 7/2 — 2.4 0.58 0.8 —0.20 — 2.1 — 1.2
83bf»b ^9/2 — 9/2 — 6.7 0.68 0.8 — 0.32 -5.6 — 0.4

The table lists nuclei with measured quadrupole moments, whose odd structure is 
that of a single particle or hole. The intrinsic quadrupole moment Qo in column five is 
calculated from (V. 8). In column six are listed the coupling strengths obtained from (11.14), 
while in column seven is given an estimate of the projection factor, based upon Fig. 10. 
The resultant hydrodynamic estimate of Q appears in column nine; in this estimate, the 
contribution from the particle moment, listed in column eight, has been included. For 
reference to Q . , cf. the Addendum.^obs

the empirical data are to be interpreted as indicating that the 
quadrupole moment associated with a given deformation is 
overestimated by the hydrodynamical formula (3). Part of the 
discrepancy may also arise from an underestimate of the mass 
parameter B (cf. p. 13), in which case the coupling situation for 
a given deformation would be closer to the strong coupling limit 
with a resultant smaller projection factor Pq.

Ratios of quadrupole moments of neighbouring isotopes often 
do not depend on the specific properties of the collective deform­
ations, and may provide direct evidence on nuclear coupling 
schemes. Thus, for example, the decrease of Q from 17C135 to 
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17C137, the latter with a closed neutron structure, indicates a 
coupling scheme in 17C135 rather closer to the strong surface 
coupling than to that produced by particle forces (cf. p. 74).

d) Correlations with Other Nuclear Properties.

The important role of the surface deformation for the struc­
ture of nuclear states implies that many nuclear properties follow 
trends similar to the quadrupole moments and in particular 
reflect the increasing deformations as one moves away from 
closed shells. In some cases, there exist simple quantitative 
correlations.

Intimately connected with the large quadrupole moments are 
the low-lying nuclear rotational states with their characteristic 
properties (cf. § VIc.ii). From the lifetimes of these states 
(§ VII c.iii) or their excitation cross-sections (Ap. AT) one can 
directly determine the intrinsic quadrupole moment Qo. The 
values obtained are just of the magnitude deduced from the 
spectroscopic Q-values (cf. Table XXVII). The comparison shows 
that the relationship between Q and Qo corresponds to a rather 
fully developed strong coupling (cf. 9), as is expected for the large 
deformations in question.

The study of transition probabilities between rotational states 
thus provides an additional means of determining nuclear qua­
drupole moments. Since the method also makes possible the 
determination of deformations in nuclei whose ground states 
have 7=0 or 1/2, and therefore Q = 0, it may add considerably 
to our knowledge of nuclear deformations.

The excitation energies of the rotational states also depend 
on the nuclear deformation (§ VIc.ii) and have been observed to 
exhibit trends parallel to those of the quadrupole moments 
(Ford, 1953; cf. also Table XXIII).

There is a tendency for large quadrupole moments to be 
associated with relatively large deviations of the magnetic mo­
ments from single-particle values (cf., e. g., Kopfermann, 1951; 
Miyazawa, 1951a). The observed correlations can be understood 
in terms of the magnetic moment shifts arising from the surface 
coupling (cf. discussion on p. 71).
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Certain anomalies in the effective radius of the nuclear charge 
distribution, derived from spectroscopic isotope shifts, can be 
related to the observed quadrupole moments (Brix and Kopfer- 
mann, 1949). In particular in Eu, the exceptionally large isotope 
shifts can be attributed to the great difference in the quadrupole 
moments of the two isotopes (Brix and Kopfermann, 1952). 
The analysis indicates a relation between Q and Qo rather close 
to that of the strong coupling limit (cf. p. 77).



Addendum to Chapters IV and V.

Details of the Analysis of Nuclear Moments.

In this Addendum, we shall attempt a somewhat detailed 
analysis of nuclear moments on the basis of the coupled model. 
The main conclusions of this analysis have been summarized 
in the preceding chapters (§ IVc and § Vc).

Many of the features of the moments are specific to the con­
figuration in question, and we therefore divide the odd-A nuclei 
according to spin and parity and consider each group separately. 
The discussion is confined to. nuclei with A > 8 (cf. footnote on 
p. 38).

The tables of empirical moments are based on Mack (1950) 
and Klinkenberg (1952) whose compilations we have attempted 
to bring up to date. The values listed represent what appears to 
be the most accurate determination, but at the most two significant 
decimals are quoted. Unless otherwise noted, references to the 
original experiments can be found in the above compilations.

The magnetic moments include diamagnetic corrections 
(Dickinson, 1950) and the quadrupole moments have been 
corrected for the polarization effect (Sternheimer, 1951, 1952). 
As an aid in the assessment of the reliability of the quoted 
quadrupole moments, the method of determination is indicated 
by the letters A, M, and C, referring to atoms, molecules, and 
crystals, respectively.

i. (1/2 +) nuclei.
Although states of I — 1/2 have no spectroscopically measur­

able quadrupole moment to reveal directly the deformation of 
the nucleus, the magnetic moments as well as other nuclear 
properties (level order, cf. below, and /3-decay, cf. § VIlie) give
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Table X. Moments of (1/2+) nuclei).

odd proton (/zsp = 2.79) odd neutron (/zsp = —1.91)

nucleus nucleus

.F1» 2.63 14Si29 — 0.56
i6P31 1.13 48Cd“4 — 0.59
81T1203 1.61 48Cd“3 — 0.62
81ti206 1.63 Sn116 50011 — 0.92

Qn117 50011 — 1.00
soSn“’ — 1.05
5aTe123 — 0.74
52Tei25 — 0.89
54^e120 — 0.78

* The moment shift arising from the s1/t~d3ii interaction in strong coupling 
has also been considered by Davidson and Feenberg (1953).

evidence of the influence of the surface coupling. Direct inform­
ation on the intrinsic nuclear deformation could be obtained 
from energies, and especially from lifetimes or excitation cross­
sections, for rotational states in these nuclei (cf. § VIc.iii).

The empirical moments of nuclei of this type show peculiar 
variations, as seen from Table X. Thus, for F19, /z /¿sp, while 
for P31 and Si29 in the same shell, very pronounced moment 
shifts are observed. In this region, the available single-particle 
orbitals are d5/2, •‘>1/2 and, a little higher, d3/2.

The interaction of these states gives rise to a large surface 
coupling which makes it appropriate to consider the nuclei in 
the strong coupling approximation.*  The state of the last 
odd particle with = 1/2 then corresponds to the lowest proper 
value of the matrix (cf. 11.26 and Ap. III.l),

/0 0 0 \ ,/-5- 1 Í 0 _ 7/2 “’R
W' = Od3/2o + ^Cosy — 7/2 -7 J/6 (Ad. 1)

\o 0 Z1J > 43135 \-7j/3 |/6 -8 /

where d3/2 and J5/2 are the energies of the d3/2r and d5/2 states 
with respect to the s1/2 level. There are additional terms in the 
nuclear potential energy arising from the surface tension and 
from the coupling energies of even groups of particles. While 
these terms are needed for the determination of the equilibrium 
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deformation, they do not otherwise influence the magnetic moment 
of the nucleus. There are also rotational energy terms (11.30) 
which may be of significance, especially in light nuclei; they 
may here be considered as giving additional contributions to the 
diagonal elements A in (1).

The magnetic moment of the state may be written

ji/ as fj,s d- » (Ad. 2)

where and a¿ are the probabilities of the s and d states, respect­
ively, (ad = a3/2 + u¡/2). The moments /zs and /¿d are given by 
(cf. IV.3, 11.19, and Ap. III.2; cf. also footnote on p. 44).

where, in the curly brackets, the upper value refers to a proton, 
the lower value to a neutron. In Fig. 11, the value of /zd is plotted 
as a function of

(Ad. 4)

The asymmetry with respect to y = 0 is due to the interference 
terms in (3).

In the region just after O16, the value of d5/2 is small compared 
to the surface coupling (cf., e. g., the level inversion of F19, 
discussed below) and will therefore be neglected in (1). On 
the other hand, A3/2 is large (~5MeV; cf. Koester, Jackson 
and Adair, 1951). If we ignore the influence of the d3/2 state, 
the resultant state is independent of the parameters of the 
model and corresponds to ¿ - 0.5 a¿ and y = 0.

Even a small d3/2 admixture may, however, have a rather 
large effect on //d, due to the interference term. The effect de­
pends essentially on the sign of y (cf. Fig. 11), which is determ­
ined by the sign of cos y. In the beginning of the combined 
d5/2 — s1/2 shell, it is found that the lowest state has Q = 1/2 
and y — 0, corresponding to negative y, and one therefore 
expects /z /zsp. At the end of the shell, we have y — ji and 
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Fig. 11. Magnetic moments arising from d-state admixture in I = Í2 = 1 /2 states. 
In the absence of surface coupling, these states would be pure s1/t, but the 
coupling may introduce large amplitudes of neighbouring particle orbitals, espe­
cially d states. In the region after O16, the s^j and d6/2 states are close-lying and 

1 2one obtains, in strong coupling, aj ~ - and a^ ~ -, The Sj/g state part of the 
magnetic moment remains equal to the single-particle value, but the d state moment 
is very sensitive to a small admixture of d3/2 state. The figure gives /zd as a function 
of the relative amplitude y of the d3/2 state, which can be obtained from (1). The 
strong asymmetry of /Zj with respect to y = 0 implies that the moment is espe­
cially sensitive to the sign of y, which again depends on the sign of the deformation 

(y < 0 for y = 0 ; y > 0 for y = ri).

positive y, and very large moment shifts, of one or two magnetons, 
may occur.

Thus, the striking difference between the F, and the Si and P 
moments may be understood in terms of the opposite shapes of 
the nuclear surface. The moment of F19 with a single proton 
(y < 0) can be approximately accounted for by any deformation 
ß > 0.1. In the case of P31 and Si29, where the odd configuration 
is that of a single hole, the //-values are more sensitive to y, and 
the empirical moments indicate y 0.5. Such a value of y 
would be obtained, if d3/2 ~ 5 MeV, for a deformation of ß ~ 0.4 
(cf. Table VII). A deformation of this order of magnitude is 
consistent with the hydrodynamical values for the surface para­
meters.
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A perturbation calculation of the effects of the surface coupling 
on the magnetic moments gives similar characteristic differences 
between F19 and P31, due to the influence of the d5/2 —c/3/2 inter­
ference. However, the magnitude of the observed shifts shows 
that we are outside the perturbation region and indicates that 
the strong coupling situation may be approximately realized.

ii. (1/2—) nuclei.
A striking feature of the empirical moments of this type of 

nuclei, as compared with all other types, is the close grouping
of the values (cf. also Figs. 7 and 8). Apart from the two lightest 
nuclei, N15 and C13, the moments are closely clustered around
the values p — —0.12 for odd proton nuclei, and // — +0.56 
for odd neutron nuclei.

This characteristic feature is a simple consequence of the
present model and is largely independent of the coupling. The 
main interacting states which produce the coupling to the sur­
face are here p3,2 and In perturbation approximation one 
obtains, from (IV. 7) and Table V, the resulting shift

5*

The level shifts arising from the coupling of the and d5/2 
levels to the surface may expiain the difference in ground state 
spin between Fii. * * * * * 17 (/ = 5/2) and F19 (/ = 1/2). The comparison 
of the coupling energy (1) for Q — 1/2 with that corresponding to 
Q = 5/2 shows that the surface coupling favours the spin I — 1/2. 
Thus, the increased deformation in F19 as compared with F17, 
resulting from the addition of the two neutrons, depresses the 
/ — 1/2 level with respect to the I — 5/2 level.

In the case of Tl203 and Tl205, the s1/2 and d3/2 states are 
near-lying, while the d5/2 state is about an MeV lower. The equi­
librium shape is expected to be y = and, if one first ignores 
the influence of the d5/2 state, one finds a2s — 0.5 which cor­
responds to a magnetic moment p — 1.20. However, the pre­
sence of the <75/2 state will tend to increase the moment some­
what (leads to large negative values of y). Similarly, the expected 
small negative value of ¿l3/2 increases a2 and thereby also the 
moment.

The remaining nuclei, listed in Table X, cannot be studied 
in as much detail as the above cases due to lack of knowledge 
of configuration assignments.



68 Addendum: Details of Moments. Nr. 16

á, = J— 0.22 I V 2 + l <».22 I / . V 2
| + 0.18] \Jî(O + I d3/2 |/ ' I— 0.1 8 J \hM + I ^5/2 |/

(Ad. 5)

Except lor N15 and C13, one expects J3/2 ~ d5/2 < /ico, and so 
the moment shift practically vanishes.

A similar situation is found when the coupling is strong. 
The potential energy matrix is then the same as (1), and fyi takes 
the form

Ôf‘ = -f-Œ45 I + {- olo I (Ad' 6>

Diagonalizing W' under the assumption d3/2 ~ J5/2, one finds 
that, irrespective of d, the ground state has u¡/2 ~ 0.67 so 
that ô/Lt practically vanishes.

The absence of a near-lying /ö/2 state in C13 and N15 implies 
a small moment shift outwards from the main group, as is ob­
served. For these nuclei, the large separation of the pl/2 level 
from the combining p3/2 level implies a rather weak coupling and 
from (5) one obtains shifts of the order of 0.1 magneton, assum­
ing Zl3/2 ~ — 5 MeV and hydrodynamical surface parameters. A 
similar effect would be obtained in strong coupling (cf. Table VII).

Although the surface coupling thus accounts for the relative 
values of the observed moments, the position of the main group 
of empirical values does not quite coincide with the single­
particle moment, which might be expected from the above cal­
culations. There thus exists a small residual moment shift, com­
mon to all these nuclei, and it is tempting to consider the pos-

Table XI. Moments of (1/2—) nuclei.

odd proton (/z^ = —0.26) odd neutron — + 0.64)

nucleus nucleus

,N16 -0.28 «c13 0.70
Y8®39 1 — 0.14 34Se” 0.53 ♦♦

45Rh103 — 0.10 * 7oYb^i 0.5
47Ag107 — 0.11 Pf 195 78tL 0.61
4,Ag10’ —0.13 soHg19’ 0.50

8aPb207 0.59
♦ Kuhn and Woodgate (1951). 

♦♦ Dharmatti and Weaver (1952a).
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sibility that we may here be observing an interaction effect of 
the type mentioned on p. 51. This interpretation would require 
that the individual nucleons embedded in nuclear matter suffer 
a reduction in the magnitude of their intrinsic magnetic moments 
of Ôps ~ 0.3 nuclear magnetons.

iii. (3/2 —) nuclei.

Table XII. Moments of (3/2—) nuclei.

odd proton (/zsp = 3.79) odd neutron (/zsp) — — 1.91

nucleus 0 nucleus Q

5B11 2.69 + 0.06(M) * 4Be9 — 1.18
29CU’3 2.23 -0.13 (C) 21Cr^ -0.47 §§§
29CU65 2.38 -0.12 (C) 28Ni81 <(±)0.2§
siGa” 2.02 + 0.24 (A) 760s189 + 0.7 §§ + 2(A)§§
31Ga’i 2.56 + 0.15 (A) soHg201 —0.56 + 0.5 (A)
33As75 1.44 + 0.3 (A)t
35Br” 2.11 + 0.34 (A) ft
35Br81 2.27 + 0.28 (A) ft
37Rb87 2.75

* Dehmelt (1952).
t Murakawa and Suwa (1952). 

ff King and Jaccarino (1953).

§ Kessler (1950).
§§ Murakawa and Suwa (1952 a).

§§§ Alder and Halbach (1953) (added 
in proof).

In the first p3/2 shell, the moments seem to give some indication 
of deviations from (jj) coupling (cf. also Inglis, 1952 and Ku- 
rath, 1952 a). The description of B11 as a single p3/2 hole, coupled 
to the surface, does imply a rather large moment shift, but in 
order to account for the observed moment, a coupling strength 
of x ~ 3 is required (cf. Fig. 5 and (IV.5)). This value of x is 
several times larger than the hydrodynamical estimate, which 
may reflect a partial breaking up of the p3/2 shells. For Be9, 
with a ((p3/2)-2; Cp.3/2)1) configuration, the observed moment 
is close to that expected in the absence of surface coupling 
(/z = —1.15; cf. Table III). However, a perturbation estimate 
as well as the strong coupling treatment (cf. Ap. Ill.ii) indicate 
that the surface coupling should produce a reduction in the 
magnitude of the moment by a few tenths of a magneton (cf. 
Table VII).
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In the higher p3/2 shells, a strong interaction is expected 
between the neighbouring jd3/2 and /’5/2 levels. While a pure 
j = 3/2 state has the anomalous strong coupling behaviour, 
considered in Ap. Ill.ii, the p3/2— /s/2 interaction may lead to 
a stabilization of the surface shape and the usual strong coupling 
scheme. For a single p3/2 — ^5/2 particle, the ß = 3/2 state with 

is expected to represent the ground state if d5/2 > 0. For small 
values of d5/2, one finds for this state a3/2 2a5/2. A similar
situation is found 

moment for this 

developed strong
Cr53, Cu63’ 65, and

for a p3/2 — /ö/2 hole if 
Í 2.15 

state is ur |— O.aa

d5/2 < 0. The magnetic 

>. Thus, a rather fully

coupling may account for the moments of
Rb87, whose odd configurations are those of

a single particle or hole.
A contribution to the moment may also arise from a small 

admixture of f7¡2, due to interference with the /6/2 state. This 
effect may shift the moment by about 0.1 magneton, inwards 
for a single-particle configuration (Cu and Cr) and outwards for 
a hole (Rb), and may thus be partly responsible for the relatively 
large moment of Rb87. The largeness of this moment may also 
in part reflect the closed neutron structure which is expected to 
give rise to a lower deformability and thus to a less developed 
strong coupling situation.

For the other nuclei in this group, which are essentially 
many-particle configurations, the analysis is more complex. 
H owever, it is expected that, during the simultaneous filling of 
the p3/2 and f5/2 levels, ß = 3/2 ground states will occur in which 
the last odd particle is predominantly of f5/2 character. The 
large moment shift of As75 may indicate such a configuration. 
It is of interest that the corresponding odd-neutron nucleus, Ni61, 
seems also to have an especially large moment shift.

The (3/2—) group of nuclei provides interesting evidence on 
the correlation between quadrupole moments and magnetic 
moment shifts. This relationship can especially be studied for
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isotopic pairs for which the spectroscopic data are most un­
ambiguously compared. It has been suggested that there is, in 
such cases, an approximate proportionality between ôu and Q 
(Kopfermann, 1951). The examples of this rule among the (3/2—) 
nuclei are listed in Table XIII. The existence of an approximate 
relationship of this type can be understood from the fact that the 
major part of <5// is attributed to the approach of the moment 
to the strong coupling value f/c and that also Q is relatively in­
sensitive to the coupling strength x. While the deformation in-

Table XIII. Correlations between magnetic moments 
and quadrupole moments for (3/2—) nuclei.

Element fy*A !
1 ^lA + 2

QaI
1 Qa+ 2

■29Cu”, 68 1.11 1.08 *
31Ga69, 71 1.44 1.59
35Br79, 81 1.10 1.20 **

♦ Krüger and Mf.yer-Berkhout (1952). 
** Dehmelt and Krüger (1951).

creases, the projection factor decreases with x (cf. Fig. 10) and 
the two effects tend to compensate each other in the relevant 
coupling region. Thus, for two isotopes, the ratios of the ôfi's and 
the Q’s are usually both of order unity and differ from this 
value in the same direction. From this interpretation it is ex­
pected, however, that this particular correlation is not of a 
general character, and, in fact, counterexamples are anticipated 
(cf. K, p. 75).

Further evidence for a correlation between ô/.i and Q may be 
seen in the general tendency, among the (3/2—) nuclei in the 
region 29 < Z < 37, for large quadrupole moments to accompany 
large magnetic moment shifts (cf. Miyazawa, 1951a). Moreover, 
certain trends in the moments can be understood in terms of 
the expected deformability of the configurations in question. 
Thus, the two largest magnetic moments are those of Rb87 and 
Ga71, both with closed neutron shells.
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iv. (3/2 +) nuclei.

Table XIV. Moments of (3/2 +) nuclei.

odd proton (/zsp = 0.12) odd neutron (/z = 1.15)

nucleus M Q nucleus Q

«CI« 0.82 -0.084 (A) Ç3316ö 0.64 — 0.08 (M)
«ci” 0.68 — 0.066 (A) C85 ieö + 0.06 (M)
i,K” 0.39 MXe»1 0.68 t — 0.12 (A)t
19k41 0.22 66Ba»5 0.83
„Ir»1 0.16 ♦ + 1 (A) * 86Ba137 0.94
„Ir»’ 0.17 * + 1 (A) *
„Au»’ 0.14 + 0.5 (A) **♦

„Na23 2.22 ioNe21 <0

♦ Murakawa and Suwa (1952 a). *•* Siemens (1951).
Kelly (1952). f Bohr, Koch and Rasmussen (1952).

The coupling of a pure d3/2 state to the nuclear surface has 
only little effect on the magnetic moment, due to the rather small 
value of (m — gR). In intermediate coupling, the moment shift 
can be obtained from Fig. 5 and (IV.5), and in strong coupling, 
the approximate treatment in Ap. Ill.ii indicates a limiting 
moment shift inwards of only a few tenths of a magneton (cf. 
Figs. 7 and 8).

While a pure j = 3/2 state leads to the anomalous strong 
coupling scheme with no definite equilibrium shape y (cf. Ap.
Ill.ii), the interaction of neighbouring orbitals or the presence 
of an even non-closed structure may lead to a stabilization of 
the nuclear shape at the positions y — 0 or zt.

If the shape is such that the ground state has Q = 3/2 (y — n 
for (d3/2) + 1, or y = 0 for (d3/2)_1), the W" matrix is the same 
as (7), where d5/2 is now negative and represents the spin-orbit 
splitting. In Fig. 12 is plotted the magnetic moment as a function 
of z = a5/2/a3/2, and one sees the characteristic asymmetry 
resulting from the interference between the spin-orbit partners. 
With increasing deformation, the moment moves rapidly away 
from /zsp for a single-particle configuration (y = zr; z < 0) and 
the opposite way for a hole in the d3/2 shell (y = 0; z > 0).

For the opposite shape (y = 0 for (d3/2) + 1, or y = zr for
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(proton)

Fig. 12. Magnetic moments arising from decoupling of spin and orbit in d-states 
with I = .Q = 3/2. In states of (3/2+) character, the surface deformation leads 
to a particle state which is a combination of d3/2 and d5/2. The figure shows the 
nuclear magnetic moment for the I = K — Í2 — 3/2 state as a function of the 
ratio of the d5/2 and d3/2 amplitudes. Fig. 12a gives the moment in the region of 
predominantly d3/2 state and the values correspond to an uncoupled d3/2 
nucleon. Fig. 12 b gives the moment for a predominantly d5/2 state with ß = 3/2, 
such as may occur for (d5/2)3 configurations. The value of /t^ corresponds to an 

uncoupled (d5/2)33/2 configuration.

(^3/2) X)> one obtains K = Í2 = 1/2, but the ground state still 
has I = 3/2 (cf. 11.24). Also the sign of the quadrupole moment 
is the usual one (Q < 0 for (d3/2) + 1 and Q> 0 for (d3/2) 1), 
since the reversed sign for Qo is compensated by a change of 
sign of the projection factor (V.6). The W' matrix is the same 
as (1) and the magnetic moment exhibits the same difference 
between particles and holes as for the Í2 = 3/2 state, but the 
effect is somewhat smaller in magnitude.

The expected trends are found in the empirical magnetic 
moments which, for the (d3/2) + 1 configurations (S33, Cl35’ 37, 
and Xe131), are appreciably shifted inwards with respect to the 
moments of the (d3/2)-1 configurations (K39) 41, Ba135’ 137, Ir191’ 193, 
and Au197).

In the first d3¡2 shell, where the level orders are best known, 
one finds that the coupling to the d5/2 and s1/2 states favours
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the shape y = n for the isotopes of S and Cl as well as of K. 
The presence of two neutrons in K41 further stabilizes this 
shape. For S33 and Cl35’ 37, the moment values /zc, listed in Table 
VII, are obtained from Fig. 12, using d5/2------5 MeV, and the
observed moments are consistent with a deformation of about 
ß = 0.2. For K39’ 41, the //c values in Table VII refer to the state 
(y = 7i, Q = 1/2, I = 3/2) and include the influence of the s1/2 
admixture (d1/2 ~ — 5 MeV).

The influence of a small interaction effect on the nucleon 
moment, of similar magnitude as that discussed for the (1/2—) 
nuclei (cf. p. 69), may be indicated by the moment of K39, 
which is larger by about a tenth of a magneton than the estim­
ated values.

The interpretation of the K39 — K41 moment differences, as 
arising from interference with the d5/2 level, receives some further 
support from the measured hyperfine structure anomaly (Ochs, 
Logan and Kusch, 1950), which gives information on the distri­
bution of the magnetic moment over the nuclear volume (Bohr 
and Weisskopf, 1950; A. Bohr, 1951a; Eisinger, Bederson 
and Feld, 1952).

The quadrupole moment ratios in the (3/2+) group provide 
further interesting information on the coupling scheme. Thus, 
the decrease of Q from Cl35 to Cl37 is, as expected, due to the 
extra deformation caused by the unfilled neutron shell in Cl35, 
which is also indicated by the observed magnetic moments of 
these nuclei. The opposite trend would have resulted if the 
particle forces dominated over the surface coupling, in which 
case the particle structure in Cl35 would have had a quadrupole 
moment and an effective coupling constant 11/15 times that of 
Cl37 (cf. 11.31 and Table III).*

The quadrupole moments of the odd-neutron S isotopes are 
of the same order of magnitude as those of the neighbouring 
Cl isotopes, thus confirming the collective nature of these moments. 
The change of sign of Q from S33 to S35 is as expected, and the 
reduction in magnitude can also be understood in terms of the 
smaller deformability of a shell of 20 than a shell of 16. A determ-

♦ This conclusion is opposite to that drawn by Flowers (1952c). However, 
in this case, as well as in others in Table II of this reference, it appears necessary 
to allow for the difference between adding neutrons at the beginning and end 
of a shell. 
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ination of the magnetic moment of S35 would be of interest, since 
its configuration (d3/2)_1, implies that it should be about a third 
of a magneton larger than the moment of S33.

on the quadrupole moments of the K isotopes 
interest. They are expected to be positive and Q 
be larger than Q (K39) because of the deforming 
the f7/2 neutrons. The larger deformation is also 
the magnetic moments which, for these nuclei,

As already mentioned, the absolute values of the quadrupole 
moments of the Cl and S isotopes are considerably smaller than 
the hydrodynamical estimates (cf. Table IX and the discussion 
on p. 59). In this connection, it is of interest that the interpreta­
tion of the magnetic moments of these nuclei provide independ­
ent evidence for appreciable deformations, of the order of those 
estimated in the hydrodynamical approximation.

Evidence 
would be of 
(K41) should 
influence of 
indicated by 
decrease with increasing deformation. Such a correlation between 
Q and ô/lc is opposite to that usually observed (cf. p. 71).

The two last nuclei in Table XIV, Na23 and Ne21, occur during 
the fdling of the d5/2 shell and have been classified by the shell 
model as (d5/2)33/2, The spin I = j — 1 indicates that the surface 
coupling dominates over the particle forces (cf. § IH.iii). The 
strong coupling state is then described by £? = 3/2 and has a 
,. . . . P Í 2.00
limiting magnetic moment of /zc = | q 42 

figuration. Small admixtures of the c/3/2 state will produce shifts 
from this value, depending on the nuclear shape. For y = 0, 
the moments increase in magnitude, while they decrease for 
y = ti. From considerations of the level filling in this region, 
Na23 is expected to prefer the y = 0 shape (positive Q)*, in 
accordance with the indication from the observed //-value (cf. 
Table VII).

j for a pure con-

V. (5/2 +) nuclei.
The magnetic moments of the nuclei in the first d5/2 shell 

may, as already mentioned (cf. Table VI), be interpreted in 
terms of the coupling of a d5/2 state to the nuclear surface. In

* Note added in proof: Recently, P. Sagalyn, working with F. Bitter, 
has found evidence for a positive quadrupole moment of Na23. (Private com­
munication from Professor Bitter).
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Table XV. Moments of (5/2 +) nuclei.

odd proton (/zsp == 4.79) odd neutron (/zsp = -1.91)

nucleus ’ Q nucleus E Q

13ai27 3.64 + 0.16 (A) 8O17 — 1.89 -0.005 (M'
51Sb^i 3.36 — 1.0(A)*** 12Mg25 — 0.86
53P27 2.81 — 0.6 (A) 40Zr81 -1-1 tt
55CS131 3.48 * 42Mo95 — 0.91
59Pr141 3.9 ** 42Mo97 — 0.93
s3Eu151 3.6 + 1.2 (A) 48Pd105 -0.6 §
83Eu153 1.6 + 2.6 (A) «Cd”4 t — 0.7 t

3.17 + 2.9 (A)
76Re187 3.20 + 2.7 (A)

* Bellamy and Smith (1953). 
** Lew (1953); Brix (1953).

*** Dehmelt and Krüger (1951 a).

f Refers to excited state (E = 247 keV); 
Aeppli et al. (1952).

ft Suwa (1952).
§ Steudel (1952).

strong coupling, one obtains //c = 
( 3.751
(-1.04 I , which accounts ap-

approximately for the moments of Mg25 and Al27.
For O17, the magnetic moment and quadrupole moment are 

very little affected by the surface coupling, as is expected due to 
the high stability of the closed-shell core. The Q-value is compar­
able with the recoil moment (cf. § IVa; see also Geschwind et 
al., 1952), which is about —0.0013. Another measure of the 
quadrupole moment induced in the core by the odd neutron 
would be provided by the lifetime of the (1/2+) excited state 
of O17 at 0.8 MeV (cf., e. g., Ajzenberg and Lauritsen, 1952). 
The decay is of E‘2 character and, for a pure shell model state, 
will be determined by the small recoil quadrupole moment. 
This would lead to a lifetime of r~ 10“7 sec., which is longer 
than for a corresponding single-proton transition by a factor of 
103 (cf. VII.7). However, the lifetime is very sensitive to im­
purities in the state.

In the region just beyond nucleon number 50, the d5/2 and 
q7/2 levels are near-lying, and nuclei of (5/2+) character are 
expected to contain components of both orbitals. The ratio of 
the two orbitals in a state with Q — 5/2 depends rather sensi­
tively on the spacing zl7/2 of the i/7/2 level with respect to the 
d5/2 level.
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The spin of Sb121 indicates a positive d7/2 for this single­
proton nucleus. A calculation of the type carried out in the pre­
ceding pages then shows that the content of ^7/2 is quite small 
(a7/2 ~ 0.1), corresponding to the rather small deviation of // (Sb121) 
from /zc. While again the moment of Mo95 with 3 valence neutrons 
is consistent with a rather pure cZ5/2, £? = 5/2 state, the small 
moment of I127 could be interpreted in terms of a negative d7/2. 
Already for small negative zl7/2 (----- 0.5 MeV), additional moment
shifts of the order of a magneton may be obtained.

The remaining (5/2 + ) nuclei have more complex configur­
ations. An exceptionally large shift is observed for Eu153. It 
seems possible to account for such large moment shifts in terms 
of a state with £? = 5/2, but predominantly of ^7/2 character. 
A test of the strong coupling interpretation of this moment 
would be provided by a measurement of the A/ 1 transition pro­
bability from the expected (7/2+) rotational state (cf. VIc.iii 
and VII.20). An analogous situation is found for Yb173 (cf. 
Table XVI).

Further information on the coupling scheme in Eu comes 
from the anomalously large isotope shift which has been inter­
preted in terms of the large change in the quadrupole moments 
of the two isotopes (Brix and Kopfermann, 1949, 1952). Such 
an effect contributes to the isotope shift an amount ÔE given by*  

* This expression is equivalent to formula (4) of Brix and Kopfermann 
(1949), except for the small relativistic correction which has been calculated by 
Mr. Jens Bang, to whom we are indebted for informing us of his results.

ÔE  15 A Aß2
Ô Eo 8 ti A A (Ad. 8)

in units of the normal isotope shift ôE0, corresponding to an in­
crease in the nuclear radius by the amount A R/R — 1/3 A A/A. 
The change in ß2 is related to that of the intrinsic quadrupole 
moment (cf. V.7) and, for the contribution to the isotope shift 
between Eu153 and Eu151, one obtains

ÔE = 0.056 AQq 0E0, (Ad. 9)

where Qo is measured in units of 10-24 cm2. Deriving Qo from 
the measured Q by assuming the strong coupling projection factor 
(V.9), one obtains ÔE — 2.4 0E0, while the omission of the 



78 Addendum: Details of Moments. Nr. 16

projection factor gives ÔE — 0.3 ôE0. The measured isotope 
shift of about 2.2 0E0 (Brix and Kopfermann, 1952) gives sup­
port to the assumption of a rather fully developed strong coupling 
in these nuclei.

vi. (5/2—) nuclei.

Table XVI. Moments of (5/2—) nuclei.

odd proton (¿ísp=0.86) odd neutron (^ = 1.37)

nucleus nucleus Q

s,Rb85 1.35 aoZn”
70Yb178

0.88 *
—0.65 + 4.0 (A)

J6Mn6B 3.47
* Dharmatti and Weaver (1952).

In the first f5/2 shell, the main influence of the surface on 
the magnetic moment is expected from the interference of the 
f7/2 state. The Rb and Zn isotopes, containing a single f5/2 hole, 
should resemble K rather than Cl (cf. p. 73). Thus, the inward 
moment shift of 0.4 — 0.5 magnetons is somewhat difficult to 
explain. It may be partly due to the influence of the near-lying 
p3/2 level which, for weak or intermediate couplings, would cause 
inward moment shifts. Partly it may reveal an interaction effect 
on the intrinsic nucleon moment, possibly of somewhat larger 
magnitude than that considered for p1/2 and d3/2 nuclei.

Some further information on the structure of the Rb85 moment 
may be obtained from the observed hyperfine structure anomaly 
in the Rb isotopes (Bitter, 1949; Ochs and Kusch, 1952). 
Previous estimates of the effect (Bohr and Weisskopf, 1950; 
A. Bohr, 1951a) are somewhat improved by including an inter­
action contribution to the nucleon moment (cf. Eisinger, Beder- 
son and Feld, 1952).

The nucleus Mn55 occurs during the filling of the f7/2 shell 
and has been classified by the shell model as (Z^) 5/2» which 
would correspond to a magnetic moment of pp = 4.13 neglecting 
the neutron-proton forces. The spin anomaly suggests a rather 
fully developed strong coupling (cf. § Ill.iii), for which the mag­
netic moment is pc = 3.27.
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vii. (7/2—) nuclei.

Table XVII. Moments of (7/2—) nuclei.

odd proton Qzsp = 5.79) odd neutron (^sp = --1.91)

nucleus nucleus 0

ioCa« -1.32 §
2iSc« 4.76 22Ti49 — 1.10 *♦

V5123 v 5.15 60Nd143 — 1.0
27CoS7 4.6 * soNd1« — 0.6
27Co‘9 4.65 6iSm14’ (±) 0.7 t

62Sm149 (±)0.6 j
68Er“’ (±)10(C)tt

* Baker et al. (1953).
** Jeffries et al. (1952); the mass 

assignment as well as the spin of the 
detected Ti isotope are in doubt.

t Elliot and Stevens (1952). 
ft Bogle et al. (1952).

§ Jeffries (1953). (Added in proof).

The moments of the nuclei in the first f7/2 shell may all be 
accounted for in terms of the coupling of an f7/2 state to the sur­
face. The moments of Sc45, Co57’ 59, and Ti49 are all close to the

strong coupling limit /zc — 4.86 I
— 1.14 J’ while the larger moment

of Ca43 and V51 may indicate a somewhat weaker coupling, 
associated with the closed shells in the even structures. This 
smaller coupling may also be indicated by the fact that the 
ground state spin equals j rather than j — 1 for these (y)3 con­
figurations (cf. § Ill.iii).

viii. (7/2+) nuclei.
Due to the simultaneous filling of the d5/2, g7/2, and hn/2 

shells, most of the nuclei in this group possess complex con­
figurations. One may attempt, however, a more detailed discus­
sion of Sb123 with its single-proton configuration. In strong coupl­
ing, the main influence of the surface on the magnetic moment 
is expected from the small admixture of p9/2 to the predominantly 
g7/2 state. For a pure g7/2 state, the strong coupling moment is 
very close to /zsp (cf. Fig. 7). Since Sb123 with a single particle 
is analogous to Cl rather than to K (cf. p. 73), the interference 
of the spin orbit partner will increase the moment. The effect
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* Brown and Tomboulian (1952). f Hardy et al. (1952).

Table XVIII. Moments of (7/2 +) nuclei.

odd proton (/zsp = 1.72) odd neutron (^sP=l-49)

nucleus Q nucleus Q

siSb123 2.55 -1.2 (A) Qp7934^e + 1.2 (M) t
83I129 2.62 -0.44 (A)

Cç-133 2.58 <0.3 (A)
rQi3555^ 2.73
Cs1375 5^ 2.84

S7La“# 2.78
71Lu175 2.9 + 6.5 (A)
73Ta181 2.1 * + 6.5 (A)*

depends on the relative magnitude of kß and d9/2, and assuming 
values of ß 0.2 and Z)9/2 <=» —2 MeV, one obtains /z = 2.3.

The nuclei having neutron configurations in the neighbourhood 
of the closed shell at 82 are expected to have relatively small 
deformability and there is evidence for a small quadrupole 
moment of the stable Cs isotope, Cs133. For these nuclei, the sur­
face should play a lesser role in causing magnetic moment shifts. 
However, the complex configurations in question make it diffi­
cult to decide whether the observed moment shifts can be ex­
plained by the particle structure itself or whether some additional 
effects are operating.

In Se79, one expects a predominantly (^9/2)5 neutron con­
figuration. Such a half filled shell will in itself generate no qua­
drupole moment, although it may produce a large nuclear de­
formation (cf. § Ilc.ii and § Ill.iii). The observed positive sign 
of Q may be the result of the proton structure which is expected 
to favour a prolate shape.

ix. (9/2 +) nuclei.
The major part of the magnetic moment shifts for these nuclei 

may be accounted for in terms of the coupling between a f/9,2 
state and the surface, which leads to the strong coupling moment

In some cases, such as In, additional effects
Í 5.93]

~ 1.20 J ’
must be present, possibly in part due to interaction contributions 
to the nucleon moment.
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* Walchli et al. (1952).

Table XIX. Moments of (9/2 T) nuclei.

ode proton (/esp == 6.79) odd neutron (/zsp — -1.91)

nucleus V Q nucleus Z* Q

41Nb9S 6.17 32&e73 — 0.2 (M)
Tc"43 1 C 5.68 * 38I<r83 —0.97 + 0.16 (A)
In11349 111 5.49 + 1.18 (A) 38Sr8’ — 1.1
In11549 111 5.50 + 1.20 (A)

X. (9/2—) nuclei.

Table XX. Moments of (9/2—) nuclei.

odd proton (/¿sp = 2.62)

nucleus 1 Q

83Bi209 4.08 -0.4 (A)

The closed-shell structure of the Pb208 core implies a very 
small deformability, as is confirmed by the observed quadru­
pole moment of Bi209, which is of the order of the single-particle 
value (cf. Table IX). However, in contrast to the case of O17, the 
magnetic moment of Bi209 is very strongly shifted from the single­
particle value. This moment shift is even larger than w’ould 
have been expected for a normally deformable nucleus (cf. the 
case of Sb123, p. 79). Since the observed quadrupole moment sup­
ports the expected negligible effect of the surface on the coupling 
scheme of this nucleus, it is probable that the magnetic moment 
reveals some as yet unexplained aspect of the particle structure. 
If the shift is interpreted as an interaction effect, the intrinsic 
proton moment is reduced to one magneton, a reduction many 
times larger than that indicated by the magnetic moments of 
other nuclei (cf. p. 52).

xi. Odd-odd nuclei.

For the self-mirrored nuclei (Ar = Z), the symmetry between 
neutrons and protons implies that the total (/-factor will almost 
always be close to 0.5 and be insensitive to the detailed coupling 

Dan.Mat.Fys.Medd. 27, DO.10. 6
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(1953). at al. (1952).tt
ttt 

§

♦

♦ ♦

♦ ♦♦

t

Bellamy and Smith 
Eisinger et al. (1952). 
Walchli et al. (1952 a). 
Daniels et al. (1952).

Gorter
Jaccarino et al. (1952) 
Kikutchi et al. (1952). 
Dehmelt (1952).

Table XXI. Moments of odd-odd nuclei.

Nucleus
Configurations

I P Q
protons neutrons

&b10 (PS/2)-1 (P3/2) 1 3 1.80 + 0.13(M) §§
7N14 Pl/2 Pi/2 1 0.40 + 0.02 (M)

»Na22 (d5/2)3 (d5/2)3 3 1.75
uNa24 (^s/a)3 (^6/2) 1 4 1.69 *
17ci38 ^3/2 (^3/2) 1 2 -0.018 (M,A)
19k<0 (^3/2) 1 / 7/2 4 — 1.30 **
19K42 (ds/s)"1 (/7/2)3 2 — 1.14 *

V6023 v (/7/2)3 (/1/2)“1 6§ 3.35 ***
17Co68 (Z7/2) 1 (P 3/ 2> / i/s)3 2 3.5 t
17Co80 (fl/l) 1 (Ps/2» f b/l)5 5 3-3 fff
37Rb88 (P 3/ 2’ f b/t) 1 (&9/2) 1 2 — 1.69 *
66Cs134 4 2.96 * ttt
,iLu178 > 7 4.2 + 8 (A)

scheme (cf. Talmi, 1951). For nuclei of this type, it is indeed 
found that /zc and /zp are nearly the same and agree closely 
with the observed moments.

For B10, the /zc value listed in Table VII refers to a state 
with £prot = f2neut = 3/2 (Z = Æ = ß = 3) and pure p3/2 
configurations. In the case of N14, the listed pc values refer to 
the state Ï2prot = Í2neut = V2 (Z = Æ = £? = 1), and take into 
account the p3/2 admixture.

For Na22, the strong surface coupling leads to a state with 
¿?prot = £>neut = 3/2 (I = K = Q = 3). For pure d6/2 orbitals, 
one obtains /zc = 1.67. For the expected nuclear shape (y = 0), 
the interference of the d3/2 state tends slightly to increase /z, but, 
due to the neutron-proton symmetry, the effect is small, amounting 
to only 0.1 magneton for a deformation of ß ~ 0.3 (cf. Table VII).

The corresponding interference effect is much larger in Na24 
(Z2prot = 3/2, ßneut = 5/2), since it does not affect the neutron 
state. Neglecting the d3/2 admixture, the strong coupling moment 
is ¡j,c — 1.13, but the observed moment can be accounted for by 
a deformation of the same magnitude as considered for Na22 
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(cf. Table VII). The shell model magnetic moment of Na24 
depends upon the nuclear forces and is not made unique by the 
assumption of charge symmetry.

For K40 (72prot = 1/2, Pneut = 7/2), the strong coupling 
magnetic moment for a pure configuration is //c = — 1.14, while 
the interference of the d3/2 orbital and the admixture of s1/2 in 
the proton state decreases the magnitude of the moment (cf. 
Table VII). The shell model gives pp = — 1.68. The observed 
moment thus indicates an intermediate coupling situation, con­
sistent with the proximity to the doubly closed shell at Ca40.

In K42, the extreme strong coupling (F2prot = — 1/2, 72neut = 
5/2) with pure configurations gives pc = — 0.65. Additional 
shifts arise from admixtures of f5/2 orbital to the neutron state, 
and d5/2 and s1/2 orbitals to the proton state. The i.tc values in 
Table VII are based on .l(/},2) ~ 5 MeV, d (d5/2)----- 5 MeV, and
zl (s1/2) ~ — 5 MeV.

For V50, the coupling scheme arising from particle forces has 
been discussed and for forces of zero range a ground state of 
7=6 has been obtained (Hitchcock, 1952) with p = 3.21*. How­
ever, forces of the expected range appear to favour 7=5. The 
effect of the surface coupling is somewhat complicated, since in 
strong coupling the neutrons and protons favour different surface 
shapes, with the result that neither y — 0 nor zr are stable po­
sitions.

The two Co isotopes can be accounted for by the strong 
coupling states (y = 0, and 72prot = 7/2; £?ncut = ± 3/2), the 
upper sign referring to Co60, the lower to Co58. However, the 
great difference in the observed (/-factors indicates a difference 
in the nature of the | Q | = 3/2 neutron states. Thus, for Co58, 
the observed moment indicates a predominantly /5/2 neutron 
state which leads to a strong coupling moment of /zc = 3.61, 
while, for Co60, a predominantly p3 2 neutron state, giving pc — 
3.60, is indicated. It is of interest that similar effects in the filling 
of the pyz, f5/2 shells seem to occur in the I = 3/2 odd-A nuclei 
in this region (cf. p. 70).

The Rb86 nucleus can be described in terms of a single proton 
and a single neutron (cf. Table II). The observed spin of 2 sug­
gests a Zà/2 assignment for the proton hole, which leads to the 

*) Private communication from Dr. A. Hitchcock.
6* 
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strong coupling moment //c = -—1.56. The shell model value 
for this configuration is /.¿p = — 2.13.

Additional evidence on the nuclear states in question may 
be obtained from the observed quadrupole moments.

For the case of B10, although the absolute magnitude of Q 
is probably rather uncertain, the observed ratio Q (B10)/Q (B11) = 
2.08 (Dehmelt, 1952) is significant. According to the (jÿ) coupling 
shell model, this ratio should be unity, whereas the surface 
coupling gives a ratio of about two.

The evidence for a moderate quadrupole moment for N14 
indicates appreciable impurities in the listed configuration (cf. 
also the ß-decay of C14).

The C13B nucleus has the symmetry associated with the fact 
that the neutron structure is obtained from the proton structure 
by replacing particles with holes (cf. § Ilc.ii). Neglecting inter­
configuration effects, the quadrupole moment therefore vanishes, 
as also for the shell model state. The influence of the coupling 
to the d5/2 and s1/2 states favours the shape y — n, and gives 
rise to a small negative Q value.



VI. Nuclear Level Structure.

a) General Features of Levels in the Coupled System.

The nuclear level spectrum, resulting from the interplay of 
particle and collective motion, depends essentially on the strength 
of the coupling. For weak coupling, there is associated with each 
particle level a spectrum of excited states with a spacing corre­
sponding to the phonon energy (cf. Fig. 2 for the hydrodynamic 
estimate of ha>, which yields about 2 MeV for the quadrupole 
oscillations of a medium heavy nucleus). With increasing coupling, 
the two level structures become essentially interwoven. For inter­
mediate coupling strength, a rather complicated spectrum may 
result but, in the limit of strong coupling, the low energy nuclear 
spectrum acquires a relative simplicity which bears some analogy 
to molecular spectra.

The strongly coupled nucleus thus exhibits two different types 
of excitation: The first corresponds to a change of state of the 
particle motion relative to the deformed surface and is in general 
associated with a readjustment of the surface. Such particle 
excitations are analogous to electronic transitions in molecules. 
The second type of excitation is a collective excitation correspond­
ing to vibration or rotation of the coupled particle-surface system, 
and is the analogue of vibrational and rotational molecular 
transitions. While the energies of particle excitations depend on 
the configuration energies in the deformed nucleus, the vibrational 
quanta are of the order of the phonon energy. The rotational 
energies decrease strongly with increasing nuclear deformation 
and may become much smaller than the phonon energy.

The collective and particle excitations possess very distinct 
properties. Thus, it is characteristic of the collective excitations 
that levels of the same family have the same parity and small 
spin changes between neighbouring states (d I = 1 or 2). In 
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contrast, particle excitations may involve change of parity as 
well as large spin changes. Further, the character of a given 
excitation reveals itself in the transition probability. While the 
particle transitions are in general slowed down by the differences 
in the surface shape of the combining states, the large electric 
quadrupole of the oscillating surface may greatly enhance the 
radiative probability for collective transitions.

With increasing excitation energy, the spacing of both particle 
and collective states rapidly decreases, and even a small per­
turbation in the ordered motion is sufficient to destroy any simple 
coupling scheme. In such a situation, the only remaining constants 
of the motion are the parity and total angular momentum. Still, 
provided the interactions are not so strong that they prevent the 
system from completing even a few periods of the simple particle 
or surface motion between energy exchanges, some of the gross 
features of the unperturbed level spectrum are preserved.

In the region of high excitation, additional types of collective 
motion, such as surface oscillations of higher order and com­
pressive oscillations, may play an important role. Further, the 
number of excitable particle degrees of freedom increases. Fin­
ally, for the very high energies, at which an appreciable fraction 
of the nucleons is simultaneously excited, the distinction between 
particle and collective degrees of freedom ceases to have a 
simple significance.

b) Particle Excitations.

For each particle configuration there exists a lowest level in 
the coupled system which, as discussed in Chapter III, usually 
has the same spin and parity as the pure particle state. If the 
nucleus possesses several neighbouring configurations, there will 
thus be corresponding states in the low energy spectrum which, 
as regards spin and parity, may be classified by means of the 
shell model.

Striking evidence for such particle excitations is afforded by 
the occurrence of low-lying states with a spin very different from 
that of the ground state and often with different parity. These 
states give rise to the long lived isomers, whose interpretation has 
provided such an important support for the shell model (Gold- 
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haber and SuNYAR, 1951; Moszkowski, 1951). The transition 
probabilities of these states, however, are found to be smaller 
than shell model estimates by a considerable factor, indicating 
that the excitations cannot be described in terms of particles 
moving in a fixed potential, but involve the surface readjustments 
characteristic of the particle transitions in the strongly coupled 
system (Bohr and Mottelson, 1952; cf. also § Vlld.i).

The ^-decays constitute another group of particle transitions 
in the classification of which the shell model has been a valuable 
guide (Mayer, Moszkowski and Nordheim, 1951; Nordheim, 
1951). Again the observed transition probabilities are in general 
reduced as compared with shell model estimates, indicating the 
influence of a rather strong surface coupling (§ VHIc.ii and iv).

The particle transitions also exhibit other features which may 
be attributed to the influence of the surface coupling. Thus, 
selection rules appropriate to the motion of particles in a spherical 
potential are often violated (Z- and j-forbiddenness, cf. § VIII c.iii 
and § Vllc.ii). The occurrence of such transitions provides 
evidence for configuration admixtures of a similar type as dis­
cussed for the magnetic moments (cf. § IVc).

The relative position of particle levels may depend on the 
nuclear deformation which can cause level shifts of the order of 
a few MeV* (cf., e. g., the spin difference of the F-isotopes, p. 67). 
Also the level order of the particle states within a many-particle 
configuration depends in an important way on the surface coupling 
(cf. § Ill.iii).

In the strong coupling scheme, particle modes of excitation 
which do not involve change of configuration, but only changes 
in the Qp quantum numbers, in general require a rather large 
energy. In cases where there are special degeneracies, however, 
they may occur among the lowest states. Thus, in strong coupling, 
the ground states of odd-odd nuclei are expected to be close 
doublets, the members of which have the same parity, but may 
differ appreciably in spin (cf. § Ilc.ii). There seems to be evi­
dence in spectra of odd-odd nuclei for a rather general occurrence

* Such a contribution to the nuclear energy may be interesting in connection 
with the estimates of the spin-orbit energy and pairing effects obtained from the 
analysis of binding energies (Harvey, 1951; Suess and Jensen, 1952). Moreover, 
it may be significant in influencing the trends in the separations of isomeric levels 
(Hill, 1950; Mitchell, 1951; Goldhaber and Hill, 1952). 
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of such doublets (cf., e. g., Goldhaber and Hill, 1952). Since 
the two members of the doublet have approximately the same 
shape, the y-transition between them should be somewhat faster 
than most other particle transitions of similar type (cf. § VII d.i).

While in regions removed from closed shells, the particle 
excitation spectrum is thus essentially modified by the coupling 
to the nuclear deformation, the particle-surface coupling is ex­
pected to be rather ineffective in the immediate vicinity of major 
closed shells. These regions should oiTer relatively favourable con­
ditions for studying the particle level order in a spherical nucleus 
and the effects of particle forces (cf., e. g., Inglis, 1952; Pryce, 
1952).

In the light nuclei, the study of excited states by means of 
nuclear reactions has revealed levels, especially in the neigh­
bourhood of He4, C12, and O16, which correspond approximately 
to single-particle excitations in the uncoupled system (cf., e. g., 
Koester, Jackson and Adair, 1951; and also Ajzenberg and 
Lauritsen, 1952). These levels are identified by their reduced 
widths which are comparable to those of single-particle scattering 
in a fixed potential.

In the region around Pb208, pure particle transitions may 
also be encountered (Pryce, 1952; Harvey, 1953). Lifetimes are 
here an important guide in interpreting the level scheme (cf. 
Chapter VII, and especially pp. 117 and 112, for comments on 
the Pb204 and Pb207 isomeric transitions).

c) Collective Excitations.

i. Excitation of closed-shell nuclei.
The weak coupling situation expected in the immediate 

vicinity of major closed-shells implies that the collective excitations 
are essentially of the simple phonon character.

The closed-shell nuclei themselves are of special interest. 
One here expects among the first excited states a (2 +) level, 
representing an approximately free surface oscillation of the 
quadrupole type. States of (2 +) character have been observed 
in 8O16 and 82Pb208 (the 3.8 MeV state in 20Ca40 is also a pos­
sible example) and are difficult to interpret as particle excita- 
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tions (cf. Pryce, 1952). Lifetime measurements for these states 
would provide crucial evidence regarding the nature of the ex­
citation, since the phonon decay probability is much larger than 
that of a particle transition (cf. § VII b.i).

The fact that the first excited state of Pb208 (E — 2.62 MeV; 
1 — 2(+)) is considerably in excess of the phonon energy 
(/ico =1.3 MeV), calculated in the hydrodynamic approximation, 
supports the expectation of a very low deformability for such 
a doubly closed-shell structure (cf. Ap. I).

The O16 nucleus has, as one of the very few exceptions among 
even-even nuclei, a (0+) first excited state. This state is diffi­
cult to account for as a particle excitation, especially because 
of its parity. One is driven to assume a two-particle excitation 
from p1/2 into d5/2 or s1/2 orbits, which cannot, however, account 
for the observed rather large transition probability for pair 
emission (cf. Ajzenberg and Lauritsen, 1952). It is possible 
that we here encounter a compressive oscillation of lowest order*.  
That such an excitation mode, in this special case, lies lower 
than the lowest surface excitation is perhaps not surprising, 
considering the large ratio of surface to volume energy for such 
a light nucleus and the fact that its closed-shell structure favours 
excitation modes which do not destroy its spherical symmetry,

* This interpretation is rather similar to that of the a-particle model which 
describes the excitation of the (0 + ) state as due to a radial oscillation of the 
whole structure (Dennison, 1940).

** Ford (1953) has calculated excitation energies for a number of configura­
tions, using the strong coupling representation. For the states considered, involv­
ing one or a few particles outside of closed shells, the limiting strong coupling 
situation is not well developed, and the spectra do not exhibit the regularities 
discussed in the present paragraph. In such cases, it seems necessary to employ 
methods appropriate to an intermediate coupling situation (cf. the more detailed 
calculations of D. C. Choudhury, referred to in footnote on p. 24).

ii. Rotational states in even-euen nuclei.
For the strongly deformed nuclei, encountered in regions 

away from closed shells, the collective excitations can be charac­
terized as vibrations and rotations**.

Especially characteristic of the strong coupling spectrum are 
the rotational states which may have energies much smaller 
than the phonon energy. These low-lying states correspond to 
rotations about an axis perpendicular to the nuclear symmetry 
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axis (cf. Fig. 3) and are labeled by varying I, for fixed values 
of Q, K, riß, and n?. Rotations about the nuclear axis, labeled 
by varying K, have energies which, in most cases, remain of the 
order of the phonon energy, and these excitations are considered 
together with the vibrational states (§ VIc.iv).

A special regularity in the collective spectrum occurs for the 
even-even nuclei, which have in their ground state I = K = Í2 = 0 
(cf. § Ill.ii). The expected cylindrically symmetric deformation 
(y = 0 or jt) leads to rotational states with even I and with 
K = Q — 0. The odd values of I do not occur, since such states 
would have odd parity (cf. § Ilc.ii for the appropriate symmetry 
properties of the wave function). From (11.30) we get for the 
rotational excitation energies

£1 = #/(/+!) / = 0, 2, 4 ■ (VI. 1)
A even parity

where the moment of inertia 3 is given bv (cf. 11.25)

3 = 3ßß2 (VI. 2)

in terms of the nuclear equilibrium deformation ß and the mass 
parameter B (cf. II.5).

The spectrum (1) is the same as that for the rotation of a 
rigid body, but the rotational motion arises in essentially different 
ways in the two cases. The collective motion in the nucleus is 
of irrotational character (cf. p. 11), and the angular momentum 
is carried only by the surface waves. The effective moment of 
inertia associated with this motion depends on the square of the 
amplitude of the waves (cf. (2)), in a similar manner as the 
momentum in a sound wave is proportional to the square of the 
amplitude of oscillation.

Deviations from the limiting strong coupling scheme imply 
corrections to the spectrum (1). Some of these have the same 
/-dependence as (1) and give rise to corrections to the moment 
of inertia (2). Others involve higher powers of I and produce a 
distortion of the spectrum. Thus, the rotation-vibration interaction 
(cf., e. g., Herzberg 1950; Nielsen, 1951), which implies that 
ß increases somewhat with I due to centrifugal distortions, gives 
to first order the energy shift
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Fig. 13. First excited states in even-even nuclei with A > 140. The energy of the 
first excited state is plotted as a function of A. The data is taken from Hollander, 
Perlman and Seaborg (1952) and from Scharff-Goldhaber (1953). The evidence 
is consistent with a (2 + ) assignment for all the levels. Similar curves have been 
given by Stähelin and Preiswerk (1951), Rosenblum and Valadares (1952), 

Asaro and Perlman (1952), and Scharff-Goldhaber (1952, 1953).

3
2

(VI. 3a)

where hatß is the excitation energy of the ß-vibration (cf.§ VIc.iv). 
Another term of the same order of magnitude as (3a) arises from 
the influence of the y-vibrations which imply a departure from 
the rotational spectrum of a symmetric top. The effect can be 
found as a second order perturbation produced by the operator 
U3 (cf. A. 96), and one obtains 

(VI. 3 b)

where ha>y is the energy of the y-vibration.
Rotational states in regions of large deformations have re­

cently been identified by their very striking properties: regu-
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Table XXII. Energies of (2+) and (4+) states in even-even 
nuclei with A> 140.

ttt
(1952).
Arnold and Sugihara (1953), 
(added in proof).

Bouissières et al. (1953), 
(added in proof).

Nucleus -^2 : E2 Ref.

62Sm150 337 777 2.3 *
72IIf178 89 289 3.2 ** ttt
72Hf180 93 307 3.3 ♦ ♦

82Pb208 2614 3200 1.2 ♦

88Ra228 67 217 3.2 ♦ ♦♦

90Th228 58 187 3.2 t
,0Th230 50 167 3.3 tt
81Pu238 43 146 3.4 tt

* Scharff-Goldha 
** Goldhaber and

BER (1953).
Hill (1952).

t Black (1924).
ff Hollander, Perlman and Seaborg

The table lists the energies (in keV) of the (2 + ) and of the tentatively assigned 
(4 + ) states. While these assignments are consistent with the available empirical 
evidence, they are in many cases in need of further examination. For rotational 
states, the ratio Ei:E2 is expected to approach the value 10:3 for large deform­
ations (cf. 1).

larities of spins and parities, characteristic energy trends, simpli­
city of the excitation spectrum, and very large E2 transition 
probabilities (Bohr and Mottelson, 1952, 1953, 1953a; Ford, 
1953; Asaro and Perlman, 1953).

Systematic studies of the first excited states of even-even 
nuclei (Goldhaber and Sunyar, 1951 ; Horie, Umezawa, Yama­
guchi and Yoshida, 1951 ; Stähelin and Preiswerk, 1951 ; Preis­
werk and Stähelin, 1952; Asaro and Perlman, 1952; Rosen­
blum and Valadares, 1952; Wapstra, 1952, 1953; Scharff- 
Goldhaber, 1952, 1953*), have revealed that, with very few 
exceptions, the first excited state is of (2+) character**, and 
that the excitation energy exhibits definite trends with respect to

* We are indebted to Dr. G. Scharff-Goldhaber for making available to 
us these results in advance of publication.

** It has been suggested that the excited states of even-even nuclei can be 
interpreted as a recoupling of the particles outside of closed shells (cf., e. g., Horie 
et al., 1951; Flowers, 1952 b). While this description may, for many configura­
tions, explain the (2 + ) nature of the first excited levels, it has not provided 
an explanation of the many other striking features of the levels discussed in the 
present paragraph. 
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the shell structure, reaching maxima around the closed-shell con­
figurations and minima as much as fifty times smaller in the 
middle of shells.

This trend is especially conspicuous in the region of the 
heavier nuclei where the shell structure is dominated by the 
doubly closed shells at Pb208 (cf. Fig. 13). Similar regularities 
are also observed for the lighter elements, but the trends are 
somewhat more complicated due to the fact that neutrons and 
protons form closed shells for different A-values (cf especially 
Scharff-Goldhaber, 1953).

While the excitations of closed-shell nuclei may represent 
simple phonon states (cf. § Vlc.i), a decreasing energy, as we 
move away from closed shells, results from the coupling with 
the particle structure, which leads to increasing nuclear deform­
ations. The rapid decrease for the first few particles added to 
closed configurations, which develops into a rather flat minimum, 
can be understood from the fact that the particle states with 
large deformative power are the first to be filled, while in the 
middle of shells the last added particles are less coupled to the 
deformed nucleus.

The small excitation energies encountered in the regions 
155 < A < 185 and A > 225 imply that, in these cases, the cou­
pling is very strong and that the rotational energies should be 
rather accurately represented by the simple formula (1), correc­
tions of magnitude (3 a and b) being small.

A direct measure of the validity of the strong coupling ap­
proximation is afforded by the location of the expected higher 
members of the rotational family. The available evidence on 
energies of the (4+) state, in the region covered by Fig. 13, is 
listed in Table XXII. It is seen that the energy ratio E,4:E2 shows 
the expected trend, approaching the strong coupling value 10:3 
(cf. 1) in the regions of large deformation.*

* Note added in proof: Asaro and Perlman (1953), from a study of the 
a-spectra of the heavy elements, have recently obtained evidence for the sy­
stematic occurrence of a rotational spectrum in even-even nuclei in the region 
well beyond Pb208. With the approach to Pb208, deviations from the energy 
spectrum (1) are observed, which can be interpreted as distortions of the type 
(3 a and b), corresponding to a vibrational energy of about one MeV, which is 
of the same magnitude as indicated by the hydrodynamical estimate (cf. Fig. 2). 
We are indebted to these authors for having informed us of their results in 
advance of publication.
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Table XXIII Deformations deduced from properties 
of rotational states.

Nucleus E (keV) F ßE

88Dy180 85 140 0.65 0.28
T7r166681-1 80 180 0.65 0.31

70Yb170 84 140 0.62 0.27
72Hf176 89 120 0.58 0.24
.«Os7«’’ 137 55 0.45 0.15
80Hg188 411 6 0.25 0.05
84Po212 719 5 0.18 0.04
84Po214 606 7 0.19 0.05

The table lists the first excited states of even-even nuclei, classified as col­
lective excitations on the basis of measured lifetimes (cf. Table XXVII). The 
factor F in the third column gives the enhancement of the transition probability 
over that expected for a particle transition (cf. Table XXVII). From a rotational 
interpretation of the states, the deformation ßE may be calculated from the ex­
citation energy by means of (VI.l and 2), and is listed in column four. The last 
column gives the deformation ß^ estimated from the intrinsic deformation Qo 
by means of (V.7). The value of Qo is obtained from the observed transition pro­
bability (cf. Table XXVII).

The large excitation energies, as well as the relatively small F-factors, for 
the last three cases in the table indicate an intermediate coupling situation, in 
which the rotational description is less appropriate.

The spin of 4 for the second rotational excitation and the 
E^.E^ ratios confirm the expected axial symmetry of the nuclear 
deformation (cf. p. 28). For a nucleus with an asymmetric equi­
librium shape, the rotational spectrum would exhibit a sequence 
of /-values and energy ratios different from (1).

It is a characteristic of the rotational spectrum that the ex­
citation of a high member is followed by a cascade of E2 gamma 
transitions with energy values in the ratio ••• 15:11:7:3, and 
with no cross-overs. There is indeed evidence (Bohr and Mottel- 
son, 1953 a) for such cascades involving states up to I = 8 with 
energies closely given by (1).*

The observed very short y-ray lifetimes of low-lying excited 
states in even-even nuclei clearly indicate the collective nature 
of the excitation (Goldhaber and Sunyar, 1951). The ratio of

* Note added in proof: The recent measurement (Arnold and Sugihara, 
1953) of the y-spectrum following the /S-decay of Lu1’« considerably improves 
the agreement with the rotational spectrum in Hf17*. 
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the observed transition probabilities to those expected for par­
ticle transitions increases as one moves away from closed-shell 
configurations and reaches values of more than a hundred in 
regions far removed from closed shells (cf. Table XXIII).

The E‘2 transition probability of a rotational state is directly 
related to the intrinsic nuclear quadrupole moment Qo (cf. 
§ Vb and § Vllc.ii), and the values derived from the observed 
lifetimes are just of the magnitude deduced from spectroscopic 
data for neighbouring odd-A isotopes (cf. Table XXVII on p. 116).

Another measure of the deformation is provided by the 
excitation energies which yield, by (1), the nuclear moment of 
inertia. Assuming the hydrodynamic value (II.6a) for B, the 
deformation ßE can be obtained from (2). This estimate of the 
deformation is compared, in Table XXIII, with the deformation 
Pq estimated from the E2 transition probability, assuming the 
hydrodynamic relation (V.7) for Qo.

It is seen that, although ßE and ßQ show parallel trends, ßE 
exceeds ßQ by about a factor of two in the region of the fully 
developed strong coupling. This effect is quite similar to the 
overestimate of the static quadrupole moments by the hydro­
dynamic model (cf. p. 59), and lends support to the view that 
the simple model of the collective deformations underlying (V. 7) 
is inadequate. As in the case of the static Q, it is also possible that 
some part of the discrepancy arises from an underestimate of B.

A general correlation has been found (Ford, 1953) between 
the energies of the first excited states of even-even nuclei, inter­
preted as rotational states, and the magnitude of the quadrupole 
moments of odd-A nuclei. The quantitative comparison shows 
the same feature encountered above, that, although the two 
estimates of the deformation exhibit similar trends, the ß-values 
derived from quadrupole moments are several times smaller 
than those derived from excitation energies.

For the smaller deformations encountered in the regions of 
closed shells, perturbation terms of the magnitude (3a and b) 
may essentially modify the spectrum and also particle forces 
may have an important influence. The expected intermediate 
coupling situation is clearly revealed by the deviations of the 
Ei'. E2 ratio (cf. Table XXII) from the strong coupling value of 
10:3, with the approach to closed-shell configurations.
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iii. Rotational states in odd-A nuclei.
The rotational spectrum in odd-A nuclei depends on the 

angular momentum Iof the ground state. If Iq = —— A 3/2,
we get a series of states with energies

E1= -^lia+O-^th+O] l./„ +2, ■■ (VI.4)
" A same parity as ground state

If the system does not strongly prefer the symmetric shape 
(y = 0 or n), as for a single particle with j = 3/2, a more com­
plicated rotational spectrum may arise (cf. Ap. Ill.ii).

In the case ß — K — 1/2, there is the additional contribution 
to the rotational energy (cf. 11.30)

¿E, = + 1 ~ (j + 1/2)(Z+ 1/2), (VI.5)

where j refers to the odd particle with ßp = 1/2. In this case, 
the ground state spin is in general no longer 1/2, and a less 
regular sequence of rotational states appears.

Since the odd-A rotational states depend more specifically 
on the properties of the ground state, they do not exhibit the 
same simple trends as those in even-even nuclei. Moreover, 
since consecutive levels have Al — 1, except in some cases 
with ß = 1/2, they may decay by Ml radiation, for which the 
transition probability is not enhanced.

A specially suited method for identifying and studying the 
rotational states in odd-A nuclei may be provided by the Cou­
lomb excitation which directly measures the E2 transition prob­
ability (cf. Ap.VI). The collective excitations therefore manifest 
themselves by their especially large cross-sections.*

Measurements of the /-decay probabilities of the rotational 
states are a’so of interest, since the Af 1 transition probability 
can be directly compared with the static magnetic moment of 
the ground state (cf. VII.20). The strong enhancement of the E2 
radiation implies that appreciable E'l admixtures may be ex­
pected in many cases, although for a single-particle /-transition

♦ Note added in proof: Recently, rotational states in odd-A nuclei have 
been identified by the method of Coulomp excitation (Hues and ZuPANèiè, 
1953; cf. also note on p. 166).
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with AI — 1 (no), the E2 radiation is extremely weak in com­
parison with Ml. Moreover, it is expected that cross-over transi­
tions (Al — 2) may in some cases compete with the cascade.

iv. Vibrational excitations.
The vibrational states are characterized by the quantum 

numbers nß and ny, and in the limit of strong coupling the 
excitation energies approach the phonon energy (cf. A. 108 and 
113). A comparable energy is associated with changes in the 
quantum number K. Due to the symmetry of the surface, the 
ny- and A-excitations only occur in definite combinations, since 
ny must have the same parity as 1/2 (K— £?) (cf. A. 92).

The vibrational states have strongly enhanced E2 decay 
probabilities, characteristic of collective excitations, and could 
be especially studied by the method of Coulomb excitation (cf. 
Ap. VI). In an even-even nucleus, an E2 transition from the 
ground state can lead to the vibrational states (nß — 1; ny = 0; 
I — 2; K — Í2 — 0) and (nß — 0; ny = 1; I — K = 2; Q ~ 0). 
In an odd-A nucleus, several rotational states can be reached for 
each type of vibrational excitation, and in addition there are 
two vibrational excitations with ny — 1, having A K — ±2.

d) Higher Excitation. The Compound Nucleus.

The more highly excited states, produced in nuclear reaction 
processes, though characterized by a somewhat greater com­
plexity than the low energy spectrum, can provide further in­
sight into the dynamics of the nuclear system. Since the present 
discussion is concerned principally with the phenomena occurring 
in the low energy region, we shall attempt only a rather brief 
description of the properties of the coupled system for higher 
excitations.

In the present paragraph, we consider the general features of 
the level structure in this region, and summarize some of the 
consequences for nuclear reactions*’ **. A more detailed formu-

* We are indebted to Professor N. Bohr for illuminating discussions on 
the influence of single-particle motion on the compound nucleus formation.

** Cf. also Hill and Wheeler (1953), who have pointed out many impor­
tant consequences of the strong interaction between the nucleonic and surface 
motion for various nuclear processes, and especially the fission reaction.

Dan.Mat.Fys.Medd. 27, no. 16. 7
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lation of nuclear reaction theory, incorporating individual-part­
icle as well as collective features, is attempted in Appendix V.

With increasing nuclear excitation, the level spacing rapidly 
decreases and any simple coupling scheme will be destroyed 
by even relatively small perturbations, which result in a sharing 
of properties between neighbouring levels of the same spin and 
parity. A simplified picture of the level structure may be obtained 
by characterizing the rate of exchange of energy in the system 
by an energy interval W within which the sharing of properties 
among levels is more or less complete. This energy is related to 
the mean free path Àa of single-particle motion by

(VI.6)

where v is the particle velocity*. The coupling thus tends to 
obscure finer features in the level structure, associated with 
simple types of motion with frequencies smaller than W[h.

The significance of single-particle motion depends on the 
relative magnitude of W and the single-particle level spacing J 
given by

(VI.7)

where K is the nucleon wave-number in the average potential. 
For W larger than d (~ 110 A_1/3 MeV), the interactions destroy 
the effects of undisturbed single-particle motion, and the properties 
of the individual configurations are uniformly distributed over 
the whole energy spectrum. Such a situation corresponds to the 
strong interaction theory of nuclear reactions, according to which 
the incident particle shares its energy with many degrees of

* The energy exchange between surface and nucleonic motion has been 
discussed by Hill and Wheeler (1953) from a somewhat different point of view. 
These authors attempt a rather detailed description of the nuclear state in the 
region of high excitation by assuming the nucleus to occupy, at any-given moment, 
a strong coupling state with a definite division of the energy between nucleonic, 
vibrational and rotational motion. The surface motion is treated in the semi- 
classical approximation appropriate to large quantum numbers. Exchanges of 
energy between nucleonic and vibrational motion occur with a frequency (the 
slippage or damping frequency) closely related to the quantity W/fi. It is found 
that the validity of this description requires W to be small compared with the 
energies of vibration and rotation. The estimate given in the present paragraph 
indicates that, in general, W is of the order of the vibrational energies, in ac­
cordance with tentative estimates by Hill and W^heeler. 
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freedom of the compound system in a time short compared to 
that required for a traversal of the nucleus (N. Bohr, 1936; cf. 
also Feshbacii and Weisskopf, 1949).

The existence of nuclear shell structure suggests a value of IV 
small compared to A. If the main interaction is due to the particle­
surface coupling, one obtains, for energies of the incident particle 
small compared with the nuclear potential, estimates of VV which 
are on the average about 2—3 MeV, but depend on A and on 
the nuclear deformation (cf. Ap. Vc). For such values of W, the 
existence of relatively undisturbed single-particle motion is ex­
pected to manifest itself in the properties of the nuclear spectrum.

Thus, in a nuclear reaction, the first stage will be the action of 
the average nuclear field on the incident particle. The coupling 
between the particle and the internal degrees of freedom of the 
target nucleus may, in subsequent stages, lead to energy exchanges 
which may eventually result in the complex types of motion 
characteristic of the compound system.

Recent measurements of total neutron cross-sections (Bar- 
schall, 1952; Miller, Adair, Bockelman and Darden, 1952; 
Nereson and Darden, 1953; Walt et al., 1953) confirm the ex­
pectation that the limit of strong interaction is not quite reached, 
and that single-particle effects are still discernible in the scat­
tering process (Weisskopf, 1952). The measured cross-sections 
represent averages over levels and the data below 3 MeV have 
been accounted for in terms of single-particle scattering in a 
complex potential (Feshbacii, Porter, and Weisskopf, 1953)*. 
The imaginary part of the potential represents the absorption into 
the compound nucleus and is closely related to the quantity W. 
The empirical data indicate an absorption which corresponds to 
IV ~ 2 MeV. It thus appears that the properties of the higher exci­
tation region may be understood in terms of the same couplings 
which operate at lower energies (cf. Ap. Vc).

A coupling energy W small compared with A has important 
implications for the whole course of nuclear reaction processes. 
Thus, the scattering widths of the individual states of the 
compound system depend on the distance from the nearest

* We are indebted to these authors for making available their results in 
advance of publication. Cf. also p. 158 if. below for further discussion of this 
analysis, and of the conditions under which nuclear cross-sections can be de­
scribed in terms of the scattering in a complex potential. 

7*
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virtual level for single-particle potential scattering. The reduced 
width of the single-particle level is mainly distributed over the 
compound states within a distance W. Outside of this region, 
the compound states are much narrower, and appear as a 
fine structure on a background of potential scattering (cf. Ap. 
Vb)*.

Moreover, for W < .1, direct couplings between entrance and 
exit channels may lead to nuclear reactions which do not pass 
through the compound stage (direct ejection of particles or direct 
excitation of rotational or vibrational modes). The coupling 
energy W would also reveal itself in the relative probability of 
the various modes of decay of the compound state, which often 
depend on the amplitude of a few simple types of motion (cf. 
Ap. Vc).

* A formulation of the nuclear dispersion theory, incorporating single-particle 
features as well as the compound nucleus formation, has also recently been con­
sidered by Feshbach, Porter, and Weisskopf. We are indebted to these authors 
for a private communication of results of their investigation.



VII. Electromagnetic Transitions.

An essential part of the present knowledge of the low energy 
nuclear spectrum has been obtained from the study of /-tran­
sitions. The determination of multipole orders is a valuable tool 
in assigning spins and parities to the nuclear states, and the 
measurement of transition probabilities yields further important 
information on the nature of the excitations involved.

The general implications of the empirical evidence for the 
nuclear level structure have already been considered in Chapter 
VI. In the present chapter, we give the calculation of electro­
magnetic transition probabilities in the coupled system and the 
more detailed analysis of the available empirical data.

a) Transition Operators.

The transition probability for radiation of a photon of multi­
pole order A and of frequency a> is given by (Weisskopf, 1951; 
Moszkowski, 1951, 1953; Stech, 1952; Blatt and Weisskopf,
1952, p.595)

T(Â) 8tt(A+1) 1 +
A [(2A + 1) ! !]2 h\c) { } (VII. 1)*

where the reduced transition probability B (A) can be written as

B(A) =2?l < daK(A’Z/)|/‘> (VII.2)

in terms of the matrix elements of the multipole operator SO? (A,//) 
of order A,/z between an initial state i and a final state f, with 
magnetic quantum number

♦ (2 2+1)!! = 1-3-5.. ..(22 + 1).
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The electric and magnetic multipole operators are given by*

(VII.3) 
and r

A
[9^+ (VII.4)

p = 1

respectively, where ep> (cp)p, and (</s)p refer to the charge, 
orbital and spin ^-factors of the particle p.

In the unified description of the nuclear dynamics, the state 
of the nucleus is described in terms of collective and particle 
degrees of freedom. The former represent the bulk of the nucleons, 
which are strongly bound, while the latter represent the most 
loosely bound particles, which may be individually excited (cf. 
§ Ila.iii). In the coordinates appropriate to this description, the 
multipole operators (3) and (4) take the form

3Re G, /z) = JT (e„ - pj , ç>p) + j3- ZcR}0 a\f, (VII.5)

p
and

= 2Mc¿ [9sS + J^L911

p

+Érh
(V11.6)

where the sums over p include the particle degrees of freedom, 
while the last terms refer to the multipole moments generated by 
the collective motion of the nucleons.

The particle part of the electric moment (5) includes the 
effect of the recoil of the nuclear core, which is of special im­
portance for dipole transitions; for A > 2, the recoil term also 
contains many-particle operators, which have been omitted in (5).

The coefficient of in (5) is obtained from (11.2), which 
is based upon a hydrodynamical description of the collective 
motion. Inadequacies of this approximation of the kind indicated 
by the nuclear quadrupole moments (cf. § Vc) would imply a

* In (3), we neglect the contribution of the intrinsic magnetic moment of 
the particle, which is of the same order as that of the magnetic multipole of one 
higher order.
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somewhat smaller value of the coefficient. The density of angular 

momentum in the collective motion is denoted by R(r) and may 
be expressed as a quadratic form in the a-coordinates.

The reduced transition probability B (A), which is related 
by (1) to the lifetime for y-emission, can also be determined from 
the cross-section for Coulomb excitation by impact of heavy 
ions (Ter-Martirosyan (1952); cf. also Appendix VI; e. g. (Ap. 
VI.17)).

The two methods for determining B complement each other 
in the sense that the lifetime measurements are most easily per­
formed when B is small, while large excitation cross-sections are 
obtained when B is large. Moreover, the relative intensity of the 
different multipole components in the field of the impinging 
particle is very different from that of the radiation field produced 
by a source of nuclear dimensions.

b) Transitions in the Weakly Coupled System.

i. Particle transitions.
In the case of a single particle moving in a spherical potential, 

a transition between states of angular momenta j\ and jf is 
electric of order X = |jf—jf\, if the spins and orbits are parallel 
in the initial as well as the final states, or if they are antiparallel 
in both cases. The value of B is given by (Stech, 1952; Blatt 
and Weisskopf, 1952; Moszkowski, 1953)

(VIL7) 

where <z|r^|/’> is the radial matrix element, and where the 
c are numerical coefficients of order unity, which can
be expressed in terms of Racah coefficients*. Values of c (/>, /<) 
are listed in Table XXIV. The arguments and denote the 
larger and smaller, respectively, of jt- and j).

If j> has parallel spin and orbit, while has antiparallel 
spin and orbit, the transition is magnetic, of order Â = \jt—jf\, 
and (cf. the references of (7))

* Stech (1952) uses a corresponding quantity jB) |2 equal to
(j < + 1/2)-1 c(j>, j <). Moszkowski (1953) uses the quantity S(Zf, L, Ij) which, 
for \ It — If \ = Â, equals (2;) + 1) (2 j< + I)“1 c(/>,



104 VII. Gamma Transitions. Nr. 16

Table XXIV. Coefficients €(/>,/<) in transition probabilities.

3/2 5/2 7/2 9/2 11/2 13/2
/< 1

1/2 1 1 1 1 1 1

3/2 6 9 4 15 181 — — —
5 7 3 11 13

5/2 9 10 50 2251 — —
7 7 33 143

7/2 4 50 7001 _
3 33 429

9/2 15 2251 Ï1 143

11/2 181 13
13/2 1

The transition probability for a single particle transition jf+ii of multipole 
order Å = \ji — j<\ involves the coefficients c(j>} jtabulated above. (Cf. 
equations (VII.7 and 8) and footnote on p. 103). The larger and smaller of /¿, jf 
are denoted by / and /<_, respectively.

Finally, if has antiparallel while has parallel spin and 
orbit, the transition is forbidden in order Â = |j{-—jf\. For a 
pure configuration, the transition would be electric of order 
Â = |ji—jf I + 1, but small admixtures of other configurations 
may suffice to produce a predominantly magnetic transition of 
order Z = |;f —j) |.

For many-particle configurations, similar expressions may 
be obtained, provided the coupling scheme is known (cf., e.g., 
Moszkowski, 1953). Thus, for two equivalent protons, the tran­
sition (j2)j = 2_> G2)j = o is °f electric quadrupole type with a 
reduced transition probability

B«(2) = —— e2
16 71

<i[r2|/’>|2 (2;2z 0(2./+ 3)
JÜ+1)

(VII.9)

In the estimates of transition probabilities in § VII d, we use 
the simple estimate
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(VII.10)

which would be obtained for a radial wave-function constant 
within the nuclear volume and vanishing outside. More detailed 
calculations have been made (Moszkowski, 1953) which yield 
similar results.

ii. Phonon transitions.
The radiation emitted by the freely oscillating nuclear sur­

face is of electric multipole type of the same order A as the sur­
face deformation. For the decay of a one-phonon state to a no­
phonon state, one finds from (5) and (A. 38) (cf. Flügge, 1941; 
Lowen, 1941; Fierz, 1943; Berthelot, 1944; Jekeli, 1952)*

/3 .\2/^
BeW — 2 CA (VII.11)

for the reduced transition probability in terms of the frequency 
€0^ and deformability C? of the Xth surface mode (cf. Figs. 1 and 
2). The cooperative nature of such a transition, as expressed in 
the appearance of the factor Z2 in (11), in general leads to a 
much faster decay than for a corresponding particle transition.

iii. Surface moments induced by particle transitions.
In weak coupling, a transition between two different particle 

states induces a moment in the surface which may be calculated 
in the perturbation approximation. Although the admixture of 
collective excitation is small, its influence may be important in 
the case of electric multipole transitions, due to the larger charge 
involved in the surface motion. The induced surface moment is 
proportional to the mass moment of the particle transition, and 
the operator (5) becomes (cf. II. 5 and 9)

I ÜpV, JLz -______ <fia>A)2__ 1
4,. CÀ (fitup2 —(E¡ —£,)2|

(VII.12)

* The results of the quoted authors differ somewhat from each other in 
numerical coefficients. Also the matrix element quoted by Blatt and Weisskopf 
(1952, p. 628) appears to lead to a transition probability too small by a factor four. 
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for a transition between particle states with energies and Ef. 
It is of significance that the particle part of depends on the 
charge of the particles, while the surface part involves only the 
coupling constant k, which is the same for neutrons and pro­
tons. The hydrodynamic estimate of the second term in (12) 
(cf. Figs. 1 and 2) indicates that it is somewhat larger than the 
first term (by about a factor of four for a medium heavy nucleus).

c) Transitions in the Strongly Coupled System.

i. Particle transitions.
In the strong coupling representation (11.15), it is convenient 

to expand the multipole operators along the nuclear axis

3W(A,/z) = (VII.13)
V

where fDf(/l,r) is expressed in the nuclear coordinate system, 
and where the ©-functions are the same as used in (II. 15).

For a particle transition between states with 7) = Å) — 
and If = Kf = one obtains, for A — | /¿ —If\,

1 J z j > T* i

In special cases, the symmetrization of the wave function (11.15) 
may introduce additional terms.

In the strong coupling scheme, where the particles move 
independently with respect to the nuclear axis, the particle 
transitions are always one-particle transitions. Thus, the first 
factor in (14) is simply related to the transition probability for a 
single uncoupled particle, provided the particle wave functions 
/ have a definite j, and provided the collective part of the mul­
tipole moments (5 and 6) can be neglected. For a transition from 
j\ — = li to jf — £}f = If, one then obtains

ß(O = (VII.15)

where /?sp(z) is given by (7) or (8). However, in some cases, 
important differences between (14) and (15) may arise from the 
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modification of the particle wave function caused by the non- 
spherical character of the potential, and from the collective con­
tributions to the multipole operators.

Thus, the tendency of the surface coupling to admix certain 
neighbouring orbitals in the particle state may, in particular, cause 
transitions to occur, even when Bsp vanishes due to shell model 
selection rules (Z-forbiddenness; j-forbiddenness).

An important contribution to electric transitions with Å > 2 
may arise from the coupling to the surface mode of order Â. 
Since the coupling to these higher order modes may be considered 
as weak, the effect can be included by using the form (12) for 
the multipole operator. This contribution to the transition may 
be particularly significant in leading to comparable lifetimes for 
electric multipole transitions of odd-neutron and odd-proton 
nuclei.

The last factors in (15) imply reductions in the transition 
probability of the type known in molecular spectroscopy (Franck- 
Condon principle; (cf., e. g., Herzberg, 1950, p. 199)). The 
factor involving the vibrational wave functions gives the reduction 
arising from the partial orthogonality of two states with differing 
magnitude or shape of deformation. This effect depends on the 
difference of the two equilibrium deformations as compared with 
the zero point amplitude. The dependence is exponential, and 
great reductions may result when the coupling is strong. If the 
two states have different shapes (strong coupling solutions cen­
tered on different values of y), it is necessary to consider the 
full symmetry of the wave function (A. 118), since it may be 
easier for the surface to oscillate from oblate to prolate form 
along different intrinsic nuclear axes (cf. Hill and Wheeler, 
1953, fig. 28). The last factor in (15) involving the spins is a 
projection factor associated with the fact that only the projection 
of the particle multipole along the nuclear axis is effective.

The reduction in transition probability due to the surface 
coupling is illustrated in Fig. 14 for an M 1 transition of p3/2—> /)1/2 
type. From the I — j = 3/2 wave function given in Fig. 4 (p. 25), 
the transition probability to an uncoupled p1/2 state may be 
simply obtained. The “unfavoured factor’’, F, representing the 
ratio of B and Bsp, is plotted as a function of x. As an example 
of the effect due to differences in shape, we have also plotted
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Fig. 14. Unfavoured factors in intermediate coupling. The coupling between particle 
and surface motion implies that particle transitions are in general slowed down 
by the partial orthogonality of the surface states of the combining levels. The 
ratio of the resulting transition probability to that for an uncoupled particle is 
referred to as the unfavoured factor, F. The figure illustrates the behaviour of F 
as a function of the dimensionless coupling constant x (11.14).

The upper curve corresponds to a p3/2-> Pi/2 Ml transition; the p3/2-state 
appropriate to a given x is obtained from Fig. 4, while the pure px/2-state has 
no coupling to the surface. The lower curve gives the square of the overlap inte­
gral between two p3/2-states with equal magnitude, but opposite sign of the 
coupling parameter. This quantity would correspond to the F-factor for a hypo­
thetical F0 transition.

the square of the overlap integral (F-factor for a hypothetical 
FO transition) for two p3¡2 states with opposite sign, but same 
magnitude of the coupling constant.

One may also employ the strong coupling solutions (A. § V.3) 
to calculate the F-factors for large couplings. For a transition 
/ —> j between states with coupling strengths x and x', one finds 
that F contains the factor 

r ( 1
F~ exp — - /2y — 1

\2;+2
j j(x —x')2 (VII.16)

which exhibits the exponential decrease of F with increasing 
coupling.
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ii. Collective transitions.
In collective transitions of the strongly coupled system, the 

last term in (5) may give rise to strongly enhanced E2 transition 
probabilities.

Of special interest are the rotational excitations, which, in 
even-even nuclei, form a spectrum with 1=0, 2, 4, • • • (cf. 
VI.1). The y-decay proceeds in cascades of E2 radiation, and 
for the transition I + 2 —► I, the reduced transition probability, 
which may be obtained by using (V. 5), is given by

Be (2)
15 2 2 (/+l)(7+2)

32 n Vo (2/+3)(2/+5)’ (VII.17)

where Qo is the intrinsic quadrupole moment (V.7). The ex­
pression (17) exceeds the one-phonon decay probability (11) 
by a factor of the order of the average number of phonons 
present in the strong coupling state.

In odd-A nuclei, the rotational levels form a sequence with 
I = K, K + 1, K + 2, • • • (cf. VI.4), except for the case of 
K = Q = 1/2. For a transition /+!->/, one obtains

15 2 2 Æ2(/+l-Æ) (7+1 + Æ) 
16%e 7(7 + 1) (2 Z+3) (7 +2) ’ (VII. 18)

while for the cross-over transitions I + 2 —> I

15 p2O2(/+1-Æ)(/+1+Æ)(Z+2-Æ)(Z+2 + Æ)
1 7 32% (7+ 1) (2 7 + 3) (7+2) (2 7 +5) (VII.19)

For the I + 1 -> I transitions, Ml radiation is also present, with 
a reduced transition probability given by

3_/_e^ \2 _ ^2(Z + 1-Æ) (Z+l+Æ)
7 4%\2Mc/^ß (7+l)(27+3) (VII.20)

in terms of the (/-factors of the particle and collective motion, 
g~ and g , respectively (cf. IV.4 and 10). While, for a similar 
sequence of particle excitations, the decay would proceed by a 
cascade of almost pure M1 radiation, the considerable enhance­
ment of the E2 radiation produced by the collective deformation 
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may, in some cases, give rise to an appreciable admixture of 
E2 radiation, and also to cross-overs of the type (19).

For odd-A nuclei with K = Q — 1/2, the rotational spectrum 
is more complicated (cf. § VIc.iii). The electric radiation is still 
given by (18) and (19), but the matrix element for Ml transitions 
cannot be related so simply to the magnetic moment of the ground 
state as in (20).

Transitions involving a change of vibrational quantum num­
bers (cf. § VI c.iv) are of pure E 2 type in the limit of strong coupling. 
The decay of a higher vibrational state may in general proceed 
to several rotational levels of the lower vibrational state. The 
transition probabilities can be obtained from (5), using the 
vibrational wave functions (A. 109 and 114). The matrix elements 
are of the same order of magnitude as for a single phonon decay 
(11) and thus are larger than for a particle transition, although 
smaller than for a rotational transition.

d) Discussion of Empirical Data.

The classification of the isomeric transitions, as well as the 
empirical decay energies, lifetimes, and the conversion coefficients 
used in this paragraph are, except where otherwise noted, taken 
from the articles by Goldiiaber and Sunyar (1951) and Gold- 
haber and Hill (1952).

In a field of such rapid development, it may be expected that 
improved experiments will modify some of the data considered 
here. Without evaluating the individual experiments, we have 
tried to coniine ourselves to those classes of transitions which, 
at the present time, seem to provide the most reliable and sig­
nificant information.

i. M 4 transitions ; unfavoured factors.
The strong spin-orbit coupling shell model predicts low-lying 

isomeric states of long lifetime in the regions before the closed 
shells at 50, 82, and 126. In these regions, particle levels of high 
spin (<79/2, ^n/2> and 6.3/2» respectively) are being filled simultan­
eously with levels of low spin and opposite parity (p1/2» ^3/2» 
and föj2) and isomeric states decaying by M4 radiation are
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Table XXV. M4 transitions in odd-A nuclei.

Nucleus F (keV) -log T
(sec-1)

F Nucleus F (keV) -log T
(sec-1)

F

0'9/2'* *■ P1/2 ^11/2 ^3/2

3oZn69 439 4.88 .060 <sn11750011 159 7.95 .120
36Kr85 305 5.18 .101 50Sn119 65 11.13 .234

Sr87 3801 390 4.27 .089 52Te121 82 10.67 .082
V®739 1 384 4.97 .055 52Te123 88 10.35 .086
V®939 1 913 1.31 .098 52Te125 110 9.43 .094
V9139 1 555 3.68 .037 52Te127 88 10.36 .080
7r8940z>I 588 2.61 .092 nrpi2952 1 e 106 9.34 .156

41Nb91 104 8.90 .73 52Te131 183 7.00 .236
41Nb9S 216 6.39 .061 64Xe129 196 7.39 .056
41Nb97 747 1.94 .024 64Xe131 163 7.91 .086

Tc9543 1 1 39 ~ 13.22 ~ .046 54Xe133 232 6.42 .105
Tr9743 1 L 96 9 67 .046 54Xe133 520 3.22 .116
Te"43 1 L 142 8.03 .057 s«Ba133 275 6.05 .054
Tn11349111 390 4.14 .038 56Ba135 269 5.77 .121
Tn115 49111 335 4.67 .044 5«Ba137 661 2.40 .085

1'13/2 /ä/2

The F-factor gives the ratio of
the observed transition probability to Pt 195 129 8.64 .049
that of a single-particle transition be- 78pt197 337 4.86 .053
tween the states indicated at the head 7.67 .048of the column (cf. (8) and (10)). soHg197 165

soHg199 368 4.50 .054
* Hopkins (1952). 82Pb207 1063 0.113* .084

expected. These expectations have been strikingly confirmed 
(Goldiiaber and Sunyar, 1951; Moszkowski, 1951).

The lifetimes of these isomeric transitions yield further 
evidence on the properties of the combining states. The known 
A/4 transition probabilities are listed in Table XXV. The last 
column gives the ratio F (the unfavoured factor) of the observed 
transition probability to that calculated for the appropriate 
single-particle transition (cf. (8) and (10), and (II.7))f. The 
F-factors are sensitive to the assumed value of the nuclear radius.

t The F-factors are analogous to the quantities | M |2 listed by Goldhaber 
and Sunyar (1951), but are obtained by comparison with a somewhat more detailed 
theoretical estimate. In the notation of Moszkowski (1953), F equals the ratio 
of I M I2 and M2UL, for magnetic transitions of order L.
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Thus, a decrease of 10 °/0 in the value (II.7) leads to an increase 
by about a factor two in the F-values of Table XXV.

Despite this uncertainty, it is evident that the transitions are 
consistently slower than expected for an uncoupled particle by 
a significant factor. This reduction provides evidence that the 
particle transitions are associated with an appreciable readjust­
ment of the collective field. The observed unfavoured factors 
correspond to a nuclear coupling scheme resulting from an 
intermediate to strong particle-surface coupling (cf. § VIIc.i).

From such an interpretation of the transitions, one can also 
correlate some of the observed trends of the unfavoured factor 
with the expected surface deformations. Thus, one notices that, 
for the nuclei possessing closed shells, and especially for those 
possessing double closed shells ± 1 particle, the F-factors are 
among the largest*. Moreover, for a series of isotopes of the 
same element, the F-values decrease as we move away from a 
closed-shell nucleus (cf. Bohr and Mottelson, 1952; Mosz- 
KOWSKI, 1953). These trends can be understood in terms of the 
increased deformation, produced by the added particles and 
reflected in many nuclear properties (cf., e. g., § Ill.iii; § Vc; 
§ VIc.ii).

In the estimate of the F-factor, the transitions are compared 
with one-particle transitions, although many of the nuclei in 
question have several particles outside of closed shells. In the 
strong coupling approximation, where the particles are coupled 
separately to the nuclear axis, the transitions do indeed only 
involve changes in the quantum numbers of a single particle, 
and the F-factor can be directly related to the change in the 
vibrational state (cf. 15). If, however, the interparticle forces 
influence the coupling scheme in the nucleus (cf. Fig. 6), there 
will be an additional effect contributing to the F-factor (cf. 
Moszkowski. 1953). Still, it seems excluded that this latter 
effect gives the main part of F, since in Table XXV there are 
several nuclei with single-particle configurations, and also for 
these the transition probabilities are considerably reduced as 
compared with shell model estimates.

Reduction in the transition probability, associated with the

* In view of the marked stability of 82Pb208, it may be significant that the 
F-factor for 82Pb207 is as small as 0.08.
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partial orthogonality of the vibrational states of different particle 
configurations, is expected as a very general feature of nuclear 
particle transitions. This is indeed observed and, besides the M4 
isomeric transitions, especially the allowed unfavoured and the 
pure GT forbidden /^-transitions provide evidence for the effect 
(cf. § VIIIc.ii and iv).

A consequence of this interpretation of the unfavoured factor 
is its absence in certain special cases where the combining states 
have similar surface shapes. Thus, the mirror ^-transitions which, 
due to the symmetry in the particle configurations, have almost 
identical deformations are known to be conspicuously faster 
than other allowed /^-transitions (cf. § VIIIc.i).

Another class of unretarded particle transitions is expected 
for the /-transitions between the two members of the ground 
state doublet in an odd-odd nucleus, where the deformations 
are expected to be rather similar (cf. § VI b). There is some 
evidence that the low energy Ml transitions in odd-odd nuclei 
are faster than in odd-A nuclei (Graham and Bell, 1953). Some 
of the long lived M3 isomers in odd-odd nuclei (cf. Goldhaber 
and Hill, 1952) may also be of this type, but uncertainties in 
the spin assignments as well as in the conversion coefficients 
prevent as yet a quantitative analysis of the lifetimes.

It would also be of interest to compare ß- or /-transitions to 
different members of a rotational family, since the vibrational 
integral in F does not affect the branching ratio.

ii. E 3 transitions; j-forbiddenness.
In the region before the closed shell at 50, another important 

group of long lived isomers has been found. These have been 
identified as E 3 transitions of the (7/2 +)<--> (1/2 —) type and 
occur for the nucleon numbers 43, 45, and 47. The (7/2+) 
states have been classified on the basis of the shell model as 
(Sr9/2)7/2’7 (Goldhaber and Sunyar, 1951; Moszkowski, 1951). 
For pure configurations of this type, the transitions would be 
forbidden to order £3 (y-forbiddenness). For odd-neutron nuclei, 
there is an additional forbiddenness for these transitions which 
require an electric multipole moment. Both these types of forbid­
denness are removed by the surface coupling which is expected 
to be rather large in these nuclei, as evidenced by the energy

Dan.Mat. Fys.Medd, 27, uo. 16. 8
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Table XXVI. E3 transitions of (7/2+)«--> (1/2—) type.

The shell model assigns a (g'9/2)3, 5, 7 configuration to the (7/2 + ) state. The 
anomalous spin I — j — 1 may be explained as a result of the surface coupling 
(cf. § IILiii). For a pure g9/2 configuration, the transition would be forbidden to 
order £3 (/-forbiddenness). The transition is assumed to occur due to the admixture 
of a small amount of the g^/2 orbital. The coupling to deformations of order three, 
which induces an E3 moment in the surface, may also be important for these 
transitions, especially in the odd-neutron nuclei. The F-factor gives the ratio 
of the observed transition probability to that of a g'7/2H«-> Pi/2 single-proton tran­
sition (cf. (7) and (10)).

Nucleus E (keV) — log T (sec-1) F

Cp77 340C 160 1.68 .013
Cp79 80 3.89 .0025

34SC“ 98 4.64 .0004
38Kr7« 127 2.47 .0026

T<r81 361XI 187 1.45 .0017
36Kr83 32.2 ~ 7.39 ~.0004
45Rh103 40 ~6.95 ~ .0007
45Rh105 130 2.55 .0010
4,Ag107 93.9 3.03 .013
47Ag109 87 3.04 .021
71W183 80 ~3.02 ~.O14

depression of the (7/2+) level (cf. § IILiii). The surface cou­
pling will admix particle states of g7/2 type and, furthermore, the 
coupling to the A — 3 surface mode produces an E3 moment 
also in odd-neutron states (cf. (12)).

In TableXXVI are listed the known E3 transitions of (7/2+)-e-> 
(1/2—) type. The F-factors listed in the last column of the table 
are derived by comparison with the transition of a single proton 
between p1/2 and g7/2 states ((7) and (10)). The comparable 
magnitude of the observed F-factors for odd-neutron and odd­
proton nuclei is an indication that the second term in (12) is 
at least comparable to the first term, as suggested by the hydro­
dynamic estimate. There may be a tendency for the odd-neutron 
F-values to be somewhat smaller than those of odd-proton nuclei; 
this could be understood from the effect of the first term in (12) 
together with the A-dependence of the last term.

The appearance of smaller F-factors in this group as com­
pared with the AÍ4 transitions, as well as the somewhat larger 
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spread in values, may reflect the fact that the transition depends 
entirely on the admixture of the g1¡2 state, which again depends on 
the degree of deformation of the nucleus.

Examples of E3 transitions between other configurations have 
also been identified, some with very small F-factors (cf. Gold- 
haber and Sunyar, 1951). While the detailed classification of 
these transitions is difficult at the present time, such highly un­
favoured transitions may be expected in regions of strong coupling, 
due to selection rules associated with the Qp and K quantum 
numbers.

iii. E2 transitions ; collective excitations.
Collective excitations give rise in general to E2 or Ml ra­

diation (cf. § Vic), and are expected to reveal themselves espec­
ially by their strongly enhanced E2 transition probabilities, 
resulting from the large electric quadrupole of the oscillating 
surface.

In the strongly coupled system, the low-lying collective ex­
citations can be characterized as rotational levels. The spectrum 
is particularly simple in even-even nuclei where a series of states 
with even I decaying by pure E2 radiation is obtained (cf. 
§ VIc.ii).

The first excited (2+) states in even-even nuclei with measured 
lifetimes are listed in Table XXVII. The F-factors in column four 
provide a comparison of the observed transition probability 
with that expected for a proton transition (j2)2-> (j2)0 for large j 
(cf. (9)).

The very large F-factors for the nuclei in regions away from 
closed shells confirm the interpretation of the states as rotational 
levels of the strongly coupled system. From the measured life­
times one can deduce, by means of (17), the intrinsic quadrupole 
moments Qo which are listed in column five. These may be 
compared with the Q0-values derived from the spectroscopically 
measured quadrupole moments of neighbouring isotopes, listed 
in column six. In the derivation of Qo from Q, the full strong 
coupling projection factor (V.9) has been assumed. The two 
determinations of Qo yield similar values. The spectroscopic va­
lues are somewhat larger than those deduced from transition pro­
babilities, but the difference may not be significant, considering 

8*



116 VIL Gamma Transitions. Nr. 16

Table XXVII. E2 transitions in even-even nuclei.

Nucleus E (keV) log T (sec-1) F |Qo| (10 24 cm2)
(transition)

|Qo| (10-24 cm2)
(spectroscopic)

««Dy160 85 7.91 140 9
88Er186 80 7.91 180 10 ~ 20 (68Er167)
70Vb^o 84 7.94 140 9 11 GoYb173)
72Hf176 89 8.01 120 9 14 (71Lu17B)
780s186 137 8.64 55 6 8 (75Re185)
80Hg198 411 10.1 * 6 2 2 (soHg201)
82Pb204 374 6.34 2x IO-3
84Po212 719 11.2 ** 5 2
84Po214 606 11.1 *♦ 7 2

* Malmfors (1952); corrected for the statistical factor in the resonance 
formula (cf., e. g., Storruste, 1951).

** Deduced from the branching ratio of a- and y-decay (cf. Bethe, 1937, 
p. 229). The lifetime for the long range a-groups is calculated from that of the 
ground state by the semi-empirical formula of Wapstra (1953) with the inclusion 
of the appropriate statistical factor. The empirical energies and lifetimes are taken 
from the compilation of Way et al. (1950) and Hollander, Perlman and Sea- 
rorg (1953). The branching ratios are obtained from these references and from 
Ellis and Aston (1930) and Rytz (1951).

The table lists the E2 transitions in even-even nuclei with measured lifetimes. 
All the transitions go from a first excited state of (2+) character to the ground 
state (0 +). The F-factor in column four is the ratio of the observed transition 
probability to the value calculated for a proton transition (/2)2 -> (/2)0 for large j 
(cf. (9)). The intrinsic quadrupole moments Qo in column five are deduced from 
(17), assuming the levels to be of rotational character. For comparison, the last 
column lists the intrinsic quadrupole moment derived from available spectro­
scopic data on neighbouring odd nuclei (cf. Addendum to Chapters IV and V). 
The projection factor (V. 9) has been assumed in calculating Qo from Q.

the experimental uncertainties involved in both types of measu­
rements.

The table exhibits the intimate correlations between excitation 
energies, reduced transition probabilities, and quadrupole mo­
ments, and also shows the expected variations of these quantities 
with the number of particles outside of closed shells.*

With the approach to the closed-shell configuration of 
Pb208, the rotational description of the states becomes less 
appropriate, and in the immediate neighbourhood of Pb208 a

* Note added in proof: Recently, Huus and Zupancig (1953) have produ­
ced the (2+) first excited states in the even 71VV isotopes by means of Coulomb 
excitation. From the measured excitation cross section they have deduced a 
deformation |Q0| 7xl0-24cm2 in good agreement with the trends exhibited in
Table XXVII (cf. also footnote on p. 166).
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Table XXVIII. E 2 transitions in odd-A nuclei.

The F-factors have been calculated by comparison with a single-proton 
transition between states with the listed spins and parities. The Q0-values for 
the Hg isotopes are obtained from (19).

Nucleus E (keV) log T (sec-1)
states

F 1 Qo 1 (10-24cm2)
(transition)i f

48Cd“1 243 6.91 5/2 + 1/2 + 0.12
73™81 481 7.74 3/2 + 7/2 + 0.005
80Hg197 134 7.47 5/2 — 1/2- 4.0 2
soHg199 159 7.94 5/2— 1/2- 5.0 2

weak coupling situation is expected. In this region, the collective 
excitations represent simple surface oscillations (cf. § VIc.i).

In the weakly coupled system, also particle excitations may 
be encountered among the first excited states (cf. § VIb). An 
example may be provided by the Pb204 activity with its relatively 
long lifetime. The fact that, for this transition, F is small com­
pared to unity may indicate a rather pure neutron excitation, 
corresponding to the closed-shell structure of the protons.

The observed E2 transitions in odd-A nuclei are listed in 
Table XXVIII. The two first have the small F-factors charac­
teristic of particle excitations. For the Hg transitions, the F-factors 
are larger than unity and indicate collective excitations. A first 
excited level of /0+2 in these nuclei can be obtained for a 
rotational family with Q = 1/2 (cf. § Vlc.iii); this interpretation 
could also account for the relatively low excitation energies as 
compared with that in Hg198. The Q0-values derived from (19) 
are just of the same magnitude as obtained for Hg198, and derived 
from the spectroscopic data of Hg201 (cf. Table XXVII). The 
intermediate F-factors of the Hg transitions, as well as the rather 
large excitation energies, indicate that the strong coupling scheme 
is not very fully developed, and deviations from the simple 
rotational character of the states may be of importance.*

* Note added in proof: An example of a strongly enhanced E2 transition 
(F ~ 100) in an odd-A nucleus (73Ta181) has recently been found by the Coulomb 
excitation process (Huus and Zupancic 1953; cf. footnote on p. 166 below).



VIII. Beta Transitions.

The analysis of /^-transitions has the dual purpose of deter­
mining the intrinsic properties of the nucleon-lepton coupling, 
and providing information on the nuclear structure. The recent 
progress in experimental techniques as well as the understanding 
of nuclear states have led to an improved evaluation of the 
coupling constants in /5-decay. This, in turn, now makes possible 
more detailed tests of nuclear wave functions.

The type of information provided by the analysis of /9-transi- 
tions is in many respects similar to that derived from electro­
magnetic particle transitions (cf. § VI b). In particular, the 
classification of transitions in degrees of forbiddenness provides 
evidence on the spins and parities of nuclear states, while a 
closer study of /?-decay transition probabilities gives more detailed 
information on the nuclear coupling scheme. In the present 
chapter, we consider the calculation of transition probabilities 
in the coupled system, and the more detailed analysis of the 
empirical data.*

a) Transition Operators.

The comparative half lives of allowed transitions may be 
written in the form

f„t = B, [(1 -x)Df(0) + xDgt(0)]-‘, 

where t is the half life and f0 the integrated Fermi 
an allowed transition (cf., e. g., Konopinski, 1943),

9 <j2mc5c4

* We are indebted to Dr. O. Kofoed-IIansen and M. Sc. A. Winther for 
valuable discussions on theoretical and experimental aspects of ^-transitions.

(VIII.1) 

function for 
while

(VIII.2)
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The partial coupling constants for Fermi and Gamow-Teller 
interactions are g(l —x)1/2 and gx},\ respectively*.

The reduced transition probabilities are given by**

Of(O) = Zl<^±|r>|2 (VIII.3)

and
oCT(o) = 42'|<i|2,?p?±p)|r>|2, (VIII.4)

Mf p

where T± = are components of the total isotopic spin. The 
operators s and r are normalized in such a way that their proper 
values are 1/2 and —1/2.

For the forbidden /^-decays, the transition operator may 
consist of several terms giving rise to different spectral shapes. 
The analysis of such mixed transitions is of special interest for 
the study of the /9-decay coupling, but the influence of nuclear 
structure is as yet more difficult to evaluate.

The forbidden transitions, which have a parity change of 
(—)di + i (-with J / 4= 0) are, however, more simple to interpret. 
These transitions are of pure Gamow-Teller type and exhibit 
a spectrum of unique shape. They are intimately related to the 
magnetic multipole transitions of order Â = d I. The compara­
tive half life is given by

fnt = B„[xZ)6r(n)]-*, (VIII.5)

where fn is the integrated Fermi function appropriate to the con­
sidered type of transition of forbiddenness n = Al—1 (cf. 
Konopinski and Uhlenbeck, 1941 ; Greuling, 1942). The normal­
ization employed here is such that

1 4V, n
/■" = i(n + 1)!p\ Z(Bn^2<"->ipFl)(W,Z)/)IV(W(,-(VIII.6) 

where the symbols are defined by Davidson (1951).
The reduced transition probability DGT(n) may be written 

in the form

* The influence of the so-called cross-terms (Fierz, 1937) has been neglected. 
Estimates of the possible magnitude of such terms have recently been given by 
Mahmoud and Konopinski (1952) and by Winther and Kofoed-Hansen (1953).

*♦ The quantities DF(0) and DGT(0) are often denoted by |) 1|2 and | $ cr |2, 
respectively (cf., e. g., Konopinski, 1943).
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^Gr(n) — y, I < 11 ~gt(zî> I1) J f> |2
/z. Mf

(VIII.7)

where the transition operator is given by* ’ **

* In the notation of Greuling (1942), we have
DGT(n) = I Qn + 1(o,î) I2 

while Konopinski and Uhlenbeck (1941), for n = 1, use the quantity B^, where 
nGr(D = r|Bf.|2.

** Blatt and Weisskopf (1952) write the transition operator in terms of

= 2 [(" + 1) (2n + 3)]-"'G-V (r" + 1 Tn + 1,_p.

1/2

(2 n + 3) !
4%2n + 3 [(n+1)!]2 !mc\n

'n+1 \ h )

(#p> <Pp)] t(±>
(VIII.8)

which exhibits the analogy to the magnetic multipole transitions
with Å = n + 1 (cf. (VII.2 and 4)). For n = 0, (8) reduces to

Ogt(0,//) = 2¿;s»»r(T, (VIII.9)
p

where s„ are the spherical vector components of s. Equation 
(7) is then equivalent to (4).

b) Evaluation of Transition Probabilities.

i. Transitions in an undeformed nucleus.
The matrix element for allowed Fermi transitions can be 

simply expressed in terms of the total isotopic spin quantum 
numbers of the combining states if charge independence of the 
forces in the nucleus is assumed (cf. Wigner and Feenberg, 
1941). From (3) one obtains the selection rule zl T = 0 and 
the value

nF(0) = (ttt2)(t±tz+i) (tz + tz±i) (viii.io) 

for the reduced transition probability.
The Gamow-Teller transition probability is more dependent 

on the nuclear coupling scheme. For transitions of a single 
particle, (4) gives
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and

¿±1
j
j

;+i

j — f +1/2

j= 1-^12
Aj = o (VIII.11)

/)Gr (0)
4/ 2^1

2 Z + 1 2 j < + 1
J/ = l. (VIII.12)

The last formula assumes j> = l + 1/2 and = l— 1/2 (J Z = 0). 
For Aj = 1 and no parity change, one may also have zl I = 2, 
in which case the transition is second forbidden, according 
to the single-particle model (Z-forbiddenness; cf. Nordheim, 
1951).

For two-particle configurations, and a few three- and four- 
particle configurations, the matrix elements are unique for 
transitions between states of given J and T (cf., e. g., Table III). 
In more complicated configurations, the value of HGr(0) will 
depend on the particular coupling scheme.

For the forbidden transitions of pure GT type, the transition 
probability for a single-particle transition may be obtained from 
(7) and (8) by using the result (VII.8).

ii. Transitions in the strongly coupled system.
The value (10) for the Fermi transition probability follows 

directly from the assumption of a constant total isotopic spin for 
the nuclear states, and is not affected by the surface coupling.

The transition probabilities for Gamow-Teller transitions in 
the strongly coupled system can be evaluated by the same methods 
as used for the electromagnetic particle transitions (§ VIIc.i).

The transition operators are conveniently expanded along 
the nuclear axis, giving (cf. VII. 13)

(VIII.13)
V

in terms of the operators £)' expressed in the nuclear coordinate 
system.

For transitions with A I — n + 1 between strong coupling sta­
tes with = K' = Ii and = Kf — I¡, one obtains
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Z)GT(n) = |SZß.ö'GT(n,±(n+l))xß/|2|j9?’99/|2^it£. (VIII.14)

If ji — (£}p)i — Ii and jf = (&p)f = If, for the transforming part­
icle, the expression (14) can be written

Z)Gr(n) = (VIII.15)

in terms of the transition probability for a single uncoupled 
particle (cf. § VIII b.i). The significance of the last factors in 
(15) in retarding the transition has been discussed in connection 
with the analogous formula (VII. 15).

In the discussion of the empirical data, this retardation is 
expressed as the unfavoured factor F, representing the ratio of 
D and Dsp. It is convenient to generalize the definition of F to 
include cases where jp 4= I2p for the states of the transforming 
particle, and for which the coupling scheme has no simple ana­
logue in the shell model. Thus, in general, for ground state 
transitions with Al = n + 1,

f = •DCr(n)|S¿,.OÓT(/>.±(n+O)zfl/f2|y^. (VIII.16)

The above discussion includes the allowed transitions (n = 0) 
with Al — 1. For allowed transitions with Al = 0, one obtains 
directly from (4)

Ögt(O) = 4|SZß/3f±Zfi/rh<?>^/|2^. (V.III.17) 

where s3 is the component of s along the nuclear axis. In this 
case, the F-factor is

F= BGr(0)l|S^j53riZfl/|-2yd_. (VIII.18)

Additional symmetry terms may appear in (17) in the special 
case oí K = Í2 — 1/2.

For the mirror transitions, the symmetry of the combining 
states implies an intimate relation between DGT and the expect­



Nr. 16 VIII. Beta Transitions. 123

ation value of sz for the states involved. For a one-particle 
configuration, one obtains directly from (4)

OGr(0) = 4Í±1<S;>i. 2m_j. (VIII.19)

i. Mirror transitions.
The absence of an unfavoured factor arising from different 

surface shapes of the combining states makes possible a rather 
detailed analysis of the /’¿-values of mirror decays, from which 
information about the nuclear coupling scheme may be obtained.

Since the nuclear magnetic moment, due to the large intrinsic 
nucleon (/-factor, primarily depends on < sz > (cf. IV.3), which 
also determines the GT transition probability (cf. 19), one expects 
rather strong correlations between magnetic moments and ft- 
values of mirror transitions. Indeed, it is found that, when the 
magnetic moment deviates from the shell model values, there 
are corresponding deviations in the mirror /"¿-values and that

♦ The strong coupling matrix elements for mirror transitions have been 
given by Davidson and Feenberg (1953) for j a constant.

In the strongly coupled system where the particles are coupled 
separately to the nuclear axis, (19) holds quite generally for 
mirror transitions, with sz referring to the last odd particle. The 
quantity < sz > also occurs in the static magnetic moment and 
may be evaluated by the methods of § IVb.*

c) Discussion of Empirical Data.

Recent studies of the /'¿-values of simple nuclei have led to 
an improved determination of the coupling constants of /Tdecay 
(Bouchez and Nataf, 1952; Kofoed-Hansen and Winther, 
1952; Trigg, 1952; Blatt, 1953). We here use the values

B(J = 2.6 x 103 sec
x = 0.5

which seem to be consistent with available empirical data (cf., 
e. g., Winther and Kofoed-Hansen, 1953).

(VIII.20)
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Table XXIX. //-values of mirror transitions.

Product 
nucleus

I Fmax(MeV) ti/ï (/bexp (/Op (/0c

#Bn 3/2 0.958 20.39m 3840( 70) 1950 3060
6C13 1/2 1.200 10. lm 4560(100) 3900 3900
,N15 1/2 1.683 2.1m 3800(200) 3900 3900
8O” 5/2 1.745 65s 2320(100) 2160 2160
8F18 1/2 2.234 19.5S 1970(100) 1300 1800
Mp21 IqINC 3/2 2.50 22.8s 3700(200) — 3600

nNa23 3/2 3.073 12.0s 4780(150) — 3600
i.Mg“ 5/2 — 7.3s — — 3030
13ai27 5/2 3.48 5.0s 3350(600) 2160 3030
uSi29 1/2 3.60 4.6s 3510(700) 1300 4350
15P31 1/2 4.06 3.1s 4020(600) 1300 4400

Q3316ö 3/2 4.43 2.0s 3800(650) 3250 4850
»CF6 3/2 4.4 1.90s 3420(800) 3930 4850

A3718a (3/2) 4.57 1.2s 2520(600) 3930 3750
»K3« 3/2 5.13 1.06s 3740(500) 3250 3750
soCa“ (7/2) 4.9 0.87s 2430(800) 2280 (2920)

The empirical data are taken from Winther and Kofoed-Hansen (1953)* 
Their estimated uncertainties for the experimental //-values in column five are 
listed in parentheses. The second to last column gives the shell model //-values, 
wherever they are independent of specific assumptions about nuclear forces. In 
the last column are listed //-values for the coupled system, obtained from the wave 
functions discussed in the text.

the observed correlation can be understood from simple assump­
tions about the nuclear states (Trigg, 1952; Winther, 1952; 
Winther and Kofoed-Hansen, 1953). The existence of such a 
correlation strongly supports the interpretation of the observed 
moment shifts as reflecting a modified nuclear coupling scheme 
(cf. p. 52).

The calculation of mirror //-values in the coupled system 
follows the same lines as employed in the Addendum to Chapters 
IV and V. Some of the details of this analysis are given below 
and the results are summarized in Table XXIX. In cases where 
the //-value depends sensitively on the nuclear deformation, the 
coupling situation indicated by the magnetic moment has been 
used. For comparison, //-values calculated from shell model 
wave functions are listed wherever the states are unique.



Nr. 16 VIII. Beta Transitions. 125

Calculation of mirror ft -values.
A = 11.

The magnetic moment of B11 indicates a rather strong sur­
face coupling (cf. p. 48), which is further supported by the 
//-value. The listed (//)c-value is obtained by determining the 
coupling situation from the magnetic moment, assuming a pure 
p3/2 state (/z = (g¡— gn) <jz> + 9rI)- However, as discussed 
on p. 69, it seems unlikely that such a configuration can account 
for the whole observed moment shift. The deviation from (jj) 
coupling indicated by the magnetic moment seems also reflected 
in the observed //-value.

A = 13 and 15.
The p1/2-nuclei are influenced by the surface only through 

the coupling to the p3/2 state (cf. p. 68). However, this coupling 
has no effect on the //-value. The discrepancy between (ft)p 
and (//)exp for A = 13 may again indicate a deviation from (jj) 
coupling.

A - 17.
Due to the stability of the O16 core (cf. p. 76), one expects 

only very little influence of the surface coupling on the //-value. 
This is consistent with the empirical data.

A = 19, 29, and 31.
The magnetic moments of these (1/2+) nuclei have been 

accounted for in terms of strong coupling states with ß — 1/2, 
containing s1/2, d5/2, and d3/2 orbitals (cf. p. 63 fl’.). The magnetic 
moment depends sensitively on the interference between the d3/2 
and d5/2 orbitals, and the //-value is expected to show a similar 
effect. Fig. 15, which is the analogue of Fig. 11, shows the cha­
racteristic asymmetry of ft with respect to the sign of the de­
formation, which accounts for the conspicuous difference between 
the //-values for A = 19 and those for A = 29 and 31. The (ft)c- 
values in Table XXIX have been obtained from y-values con­
sistent with the observed magnetic moments. It is of interest that 
for F19 the (/7)c-value differs appreciably from (jt)p, although 
[i /zsp- I empirical data seem to support this expectation.
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Fig. 15. Bela decay transition probabilities arising from d-state admixture in I — Í2 = 
1/2 states. The figure gives the reduced GT-transition probability for mirror tran­
sitions between states of the type discussed in Ad.i (cf. especially caption to Fig. 11). 
The states are characterized by the amplitudes ~ 1/3 and a2d ~ 2/3. The ratio 
of d3/2 to di/2 is denoted by y. The strong asymmetry of DGT with respect to the 
sign of y arises from the d3/2—d6/2 interference, and is similar to the behaviour 

of the magnetic moment.

A = 21 and 23.
In the strong coupling approximation, these nuclei are re­

presented as Q = 3/2 states containing d5/2 orbitals with a small 
admixture of d3/2 (cf. p. 75). The (/Z)c-value is very sensitive 
to this admixture and the values given in Table XXIX correspond 
to a d3/2 amplitude of a3/2 = —0.2 • a5y2, which is in accordance 
with fi (Na23). In the absence of the d3/2 interference, one would 
have (/7)c = 4300.

A = 25 and 27.
The (/7)c-values are calculated for strong coupling states 

w’ith y = £) = 5/2 which account approximately for the magnetic 
moments of Mg25 and Al27 (cf. p. 76).

A = 33, 35, 37, and 39.
In the strong coupling approximation, these nuclei are de­

scribed as ß - 3/2 states, predominantly of d3 2 type, with a 
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small admixture of d5/2. One expects the (/7)c-values, just like 
the magnetic moments (cf. p. 72), to depend rather sensitively 
on the sign of the interference term, which again depends on 
whether the configuration is that of a single odd particle or hole. 
In the former case, corresponding to A — 33 and 35, the (ft}c- 
values in Table XXIX are calculated for the value a5/2 = —0.15 a3/2 
suggested by the magnetic moments. In the latter case (A = 37 
and 39), the opposite sign for u5/2 applies.

A = 41.
The (/7)c-value listed in parenthesis corresponds to the strong 

coupling limit (j = ß = 7/2), but the stability of the Ca40 core 
may imply a weak coupling for Ca41.

ii. Allowed, unfavoured transitions.
The shell model has been a valuable guide in the classification 

of /^-transitions in degrees of forbiddenness, especially through 
its ability to predict the parities of the combining states (Mayer, 
Moszkowski and Nordheim, 1951; Nordheim, 1951). At the 
same time, the quantitative analysis of the /"/-values indicates 
an important influence of the dynamical aspects of the collective 
field. This is strikingly illustrated by the difference between the 
/"/-values of mirror transitions and other allowed transitions. 
While the symmetry of the mirror states implies almost identical 
surface shapes, other types of transitions are in general expected 
to be appreciably retarded, due to surface readjustments accom­
panying the particle transitions.

Table XXX lists the ground state transitions in odd-A nuclei, 
excepting the mirror transitions, which have been classified as 
allowed (Mayer, Moszkowski and Nordheim, 1951). The F-factor 
in the last column provides a measure of the retardation of the 
observed transitions as compared with a single-particle transition 
between the states listed in columns four and five (cf. (16) and 
(18)).

It is seen that the transitions are slowed down by a factor 
of the order of 10—100, which is of the same order of magnitude 
as the reductions for M4 transitions (cf. Table XXV).

The allowed transitions in even-A nuclei show a behaviour 
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Table XXX. Allowed unfavoured ^-transitions in odd-A nuclei.

The empirical Fo and log f0lvalues as well as the spin and parity of the com­
bining states are taken from Mayer, Moszkowski and Nordheim (1951). The 
F-factors are calculated by comparison with the single-particle transitions listed 
in columns four and five (cf. (16) and (18)). The superscript gives the value of 

in cases where it differs from jp.

Nucleus £0 (MeV) log/<d
particle states

F
i f

10Ne« — 4.1 4.9 ^S/2 d3'25/2 .16

nNa25 — 3.7 5.2 »3/2d5/2 ^5/2 .056
C85 16° — 0.17 5.0 ^3/3 ^3/2 .083

20Ca45 — 0.22 5.6 / 7/2 Z7/2 .010
iiSc49 — 1.8 5.5 / 7/2 f 7/2 .013
27Co61 — 1.3 5.2 f 7/2 L/2 .019
3oZn63 + 2.36 5.4 P2/2 P3/2 .012
3oZn«9 — 1.0 4.6 Pl/2 Ps/2 .050
31Ga’3 — 1.4 5.9 P3/2 Pl/2 .0050
32Ge75 — 1.1 5.0 Pl/2 P3/2 .020
33Aa71 + 0.6 5.1 P3/2 Pl/2 .030
33AS77 — 0.7 5.7 Ps/2 Pl/2 .077
3«Se73 + 1.29 5.3 P I/2 P3/2 .0098
34Se81 — 1.5 4.8 Pl/2 P 3/2 .031
3sBr7S + 1.6 5.6 Pz/2 Pl/2 .010
35Br77 + 0.36 5.0 P3¡2 Pl/2 .038
35Br83 — 1.05 5.3 P 3/2 Pl/2 .020
35Br85 -2.5 5.1 P3/2 Pl/2 .030
45Rh105 -0.57 5.5 9 v/2 91/2 .0091
so$n121 — 0.38 5.0 “3/2 ^5/2 .022
52Te127 — 0.76 5.6 ^3/2 ^5/2 .0056
eoNd141 + 0.7 5.2 ^3/2 ^5/2 .014

similar to that of odd-A nuclei (cf. Nordheim, 1951). An inter­
esting anomaly is the decay of 6C14 whose long lifetime may indi­
cate an accidental cancellation in the matrix element. Additional 
information on the states involved in this transition could be 
obtained from a measurement of the y-decay lifetime of the 
2.31 MeV state in 7N14. This state is believed to be the T — 1 
state which is isobaric with the C14 ground state (cf., e. g., Ajzen- 
berg and Lauritsen, 1952); it decays by M1 radiation, and the 
transition matrix element is very similar to that involved in the 
/Ldecay of C14.
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Table XXXI. Z-forbidden /^-transitions in odd-A nuclei.

Nucleus Fo (MeV) log Ad
particie states

F
f f

8O1# — 4.5 5.5 d3,i
5/a

d1/a
5/2 .026

uSi» — 1.8 5.9 d3/a
U3/a

dl/2
3/2 .028

i5P33 -0.26 5.1 d1/s
3/2

d8/*
U3/2 .082

a8Ni83 — 0.05 6.8 fb/3
'5/2

yS/l
'5/3 .0040

a8Ni85 — 2.10 6.6 ,5/2
'5/2

,3/2
'5/2 .0067

a9Cu81 + 1.22 4.9 zs/i 
' 5/2

,5/2
' 6/2 .22

a9Cu8’ — 0.65 5.5 ,S/2
'5/2

,5/2
' 5/2 .053

80Zn85 + 0.32 7.0 fS/1 
' 5/2

,3/2
'5/2 .0026

3aGe89 + 1.0 6.0 ,5/1
'5/2

,3/2
'5/2 .026

48Pd109 — 1.0 6.2 a5/t
“7/2

7/2
y9/2 .0018

The empirical Eo and log fot values as well as the spin and parity of the com­
bining states are taken from Mayer, Moszkowski and Nordheim (1952). These 
transitions, which are forbidden for pure shell model configurations, occur in the 
coupled system due to admixtures of the states listed in columns four and five. 
The strong coupling notation is used and the superscript denotes the component 
Qp of angular momentum along the nuclear axis. The F-factors are obtained by 
comparison with a pure particle transition of the listed type (cf. (16)).

There are also other cases where it would be of interest to 
combine lifetime evidence on allowed GT /^-transitions with that 
of M1 transitions between the corresponding isobaric states 
(e. g., He6 (/L)Li6 compared to the y-decay of the 3.58 MeV 
level in Li6. Another example is the Be7(K)Li7* (478 keV), which 
may be compared with the y-decay of the excited Li7-state.)

iii. l-forbidden transitions.
The special type of odd-A transitions with d Z = 1 and no 

parity change, which according to the shell model have Z11 — 2, 
are listed in Table XXXI. They are classified as Z-forbidden

Dan.Mat.Fys.Medd. 27, no. 16. 9 
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transitions (Mayer, Moszkowski and Nordheim, 1951). Their 
/’¿-values are comparable with, although somewhat larger than 
those of the allowed unfavoured transitions in Table XXX, and 
they have spectra of allowed type.

The configuration admixtures which are a general consequence 
of the surface coupling can destroy the /-forbiddenness in a 
similar manner as for the j-forbiddenness encountered in the 
F3 transitions (gVIId.ii). The fourth and fifth columns of 
Table XXXI list the I, j, and ß values of the single-particle orbit­
als, which are assumed to contribute the principal part of the 
transition matrix element. Assuming pure states of these types, 
one calculates the F-factors of the last column in the same way 
as for the transitions in Table XXX (cf. (16)).

The appearance in Table XXXI of somewhat smaller and 
more erratic F-factors than in Table XXX may reflect the sen­
sitivity of the transitions to small amplitudes of admixed states 
(cf. the analogous situation for the j-forbidden F3 transitions 
(Table XXVI) as compared with the M4 transitions (Table XXV)).

The unfavoured factors of Table XXXI are somewhat larger 
than those of Table XXVI, which may be associated with the 
greater ease with which the surface destroys the /-forbiddenness 
than the j-forbiddenness because of the greater energy separation 
between the spin-orbit partners than between neighbouring orbit­
als in the same shell.

iv. Pure GT forbidden transitions.
The forbidden transitions which are identified by their spectral 

shape as being of the pure GT type are listed in Table XXXII. 
The unfavoured factor Fin the last column provides a comparison 
of the observed transition probability with that of a single­
particle transition between the states listed in columns four and 
five (cf. (16)). It is seen that the F-factors, as expected, are 
comparable to those of the allowed unfavoured /^-transitions 
(Table XXX) and the M4 isomeric transitions (Table XXV).

The two largest F-factors in Table XXXII are those of B10 
and K40. In the former case, the observed F-factor can be ac­
counted for in terms of the projection factor alone, with no 
contribution from the vibrational wave functions (cf. 14 and 16). 
The occurrence of similar surface shapes in the two combining
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Table XXXII. Forbidden /^-transitions of pure GT type.

Nucleus Fo (MeV) log fnt
particle states

F
i /

odd A Al = 2 yes (n == 1)

18A« — 2.55 8.8 fl/2 ^3/2 .03
38Sr88 — 1.46 8.3 ^5/2 Pi/2 .09

Cr91 3801 — 3.2 8.4 ^5/2 P1/2 .07
V9139 1 — 1.56 8.5 P1/2 ^5/2 .016

55CS137 — 0.53 8.7 91/2 ^11/2 .011

even A Al = 2 yes (n == 1)

1?C138 — 4.81 8.1 /’/« 
' 7/2 d,/a3/2 .16

1.K« — 3.58 8.5 ,5/2
' 7/2 d1/2U3/2 .16

37Rb88 — 1.82 8.5 •v»/2
/5/2
'6/2 .04

Cr90 38O1 — 0.54 8.2 rf5/2
5/2 di .09

39 1 — 2.20 8.1 ¿5/2
U5/2 di .14

81ti2M — 0.765 8.9 3/2
Ps/2 s_1/t

1/2 .010

even A A I = 3 no (n == 2)

5B10 —0.56 11.3 -3/2
Ps/2

3/2
P3/2 .23

even A Al = 4 yes (n == 3)

19K40 — 1.36 15.1 p/2
'7/2 3/2 .24

The table lists the forbidden transitions classified by their measured spectra 
as of pure GT type (Wu, 1950; Lidofsky et al., 1952; Feldman and Wu, 1952). 
The log fnt values are obtained by using the formulae and curves of Davidson 
(1951). The F-factors are obtained by comparison with a pure particle transition 
between the states listed in columns four and five (cf. (16)).

states is expected, since in strong coupling the occupied particle 
states have the same deforming power (cf. the similar situation 
expected for /-transitions between the members of the ground 
state doublet in odd-odd nuclei (p. 113)).

9*
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In K40, the jF-factor as well as the magnetic moment (cf. 
p. 83) indicate an intermediate coupling situation. In such cases 
of weak or intermediate surface coupling, it is of interest to 
compare the observed transition probabilities with those expected 
for a coupling scheme arising from the influence of particle 
forces (cf. § Ilc.iii). The unfavoured factor Fp obtained in this 
way is in general somewhat larger than F, in the case of many­
particle configurations. Thus, for K40, one finds Fp — 0.7.



IX. Summary.

A unified description of the nuclear structure is attempted, 
which takes into account individual-particle aspects as well as 
collective features associated with oscillations of the system as a 
whole (§ I). The most important of the collective types of motion, 
for the low energy nuclear properties, are oscillations in the nu­
clear shape, which resemble surface oscillations. The collective 
motion is associated with variations of the average nuclear field, 
and is therefore strongly coupled to the particle motion (§ Ila).

The particle-surface coupling implies an interweaving of the 
two types of motion, which depends on the particle configuration 
as well as on the deformability of the surface. In the immediate 
vicinity of major closed shells, the high stability of the spherical 
nuclear shape makes the coupling relatively ineffective. In such 
a weak coupling situation, the nucleus can be described in terms 
of approximately free surface oscillations and the motion of in­
dividual nucleons in a spherical potential (§ Ilb.i).

With the addition of particles, the coupling becomes more 
effective, and the nucleus acquires a deformed equilibrium shape. 
For sufficiently large deformations, a simple limiting coupling 
scheme is realized, which bears many analogies with that of 
linear molecules. In the strong coupling situation, the nucleus 
performs small vibrations about an axially symmetric equilibrium 
shape. The particles moving in the deformed field are decoupled 
from each other and precess rapidly about the nuclear axis, 
following adiabatically the slow rotation of the nuclear shape 
(§ Ilb.ii and § Ilc.ii; cf. Figs. 3 and 6).

An analysis of the observed nuclear properties of the low 
energy region reveals many of the characteristic features of the 
coupled system.
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For nuclei with major closed-shell configurations, or with a 
single extra particle, the expected weak coupling situation is 
especially confirmed by the high excitation energies (cf., e. g., 
Fig. 13) and the small quadrupole moments (§ Vc). Also magnetic 
moments indicate that particle motion in a closed-shell core is 
little influenced by the coupling (cf. O17, p. 76), although the 
anomalous moment of Bi209 implies as yet unexplained features 
of the particle structure (cf. p. 81).

Already for configurations with a few particles, the empirical 
data give evidence of a major effect of the particle-surface coupling, 
and in regions further removed from closed shells, a rather fully 
developed strong coupling situation is found.

In particular, the nuclear excitation spectrum clearly indicates 
a structure of nuclear states governed by the strongly coupled 
particle and collective motions. A striking feature is the occur­
rence of collective excitations of rotational character, which reveal 
themselves by their energy trends, the regularity of their spectrum, 
and their short lifetimes (§ VIc.ii). The accuracy of the strong 
coupling description of these states in regions of large deformations 
is exhibited by the energy ratios within a rotational family (cf., 
e. g., Table XXII and also notes on pp. 93 and 166).

The particle modes of excitation can be studied especially in 
the long lived isomers and the ^-activities. For these states, the 
spins and parities, which account for the order of the transitions, 
have confirmed the configuration assignments given by the shell 
model. However, the observed transition probabilities, which are 
appreciably smaller than would correspond to particles moving 
in a fixed potential, provide evidence for the readjustments of the 
collective field, which are a characteristic of the particle transitions 
in the coupled system (§§ VI b, VII d.i, VIII c.ii and iv).

The modification of the nuclear coupling scheme arising from 
a strong particle-surface interaction also manifests itself in the 
static properties of nuclear ground states. Thus, for many­
particle configurations, the ground state spin may differ from 
that which would result from a coupling due to particle forces 
(cf. Fig. 6). Especially, the occurrence of I — j — 1 in (j)3 
configurations gives evidence for a surface coupling dominating 
over the particle forces (§ Ill.iii).

The magnetic moments provide a measure of the sharing of
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angular momentum between particles and surface, and support 
the strong coupling interpretation of nuclear states in regions 
removed from major closed shells (§ IVc; cf. especially Table
VI) . The moments are also sensitive to modifications of the 
particle state resulting from the non-spherical character of the 
potential, and thus provide rather detailed tests of nuclear wave­
functions (Addendum to Chapters IV and V; cf. also Table
VII) . The comparison between magnetic moments and the ft- 
values of mirror /^-decays further supports the interpretation of 
the nuclear states (§ VIIIc.i).

While many of the nuclear properties considered depend 
primarily on the coupling scheme, information on the collective 
motion of a more detailed character may be obtained from the 
analysis of quadrupole moments and of the energies and life­
times of rotational states. It is found that the observed quadrupole 
moments, as well as the related E2 matrix elements for rotational 
transitions, are systematically smaller than would correspond to 
surface deformations of the simple hydrodynamical type (§ Vc, 
§ Vlc.ii). In this deviation, one has an interesting indication of 
the inadequacy of the liquid drop idealization of the nuclear 
collective properties, which may be associated with the non-uni- 
formity of the nuclear density distribution (§ Ila).

The present discussion has been restricted principally to low 
energy phenomena, but the basic features of such a unified 
description retain their validity also for the higher excitations en­
countered in nuclear reaction processes (§ Via). The increased 
level density implies a certain complexity in the nuclear states, but 
the fundamental nature of the individual-particle and ordered 
collective motions is still expected to manifest itself (§ Vid; cf. 
also Ap. Va and b).

Thus, the recent measurements of total neutron cross-sections 
have revealed a structure associated with potential scattering of a 
single particle, as well as aspects arising from the coupling to 
the internal degrees of freedom of the target nucleus, which may 
lead to the complicated motion of the compound nucleus. It ap­
pears that the observed coupling can be understood in terms of 
an interaction between the incident particle and the nuclear surface 
oscillations of the same magnitude as implied by the low energy 
phenomena (Ap. Vc).



Appendix I.

Shell Structure and Deformability.

The nuclear deformability depends on the extent to which the 
particle structure can adjust to a deformation of the field. Thus, 
important deviations from the simplified surface tension de­
scription may arise for configurations with anomalously large 
level spacings (closed-shell nuclei) or if the deformation changes 
too rapidly for the particle structure to follow adiabatically (cf. 
Gallone and Salvetti, 1953; Hill and Wheeler, 1953).

For deformations preserving axial symmetry, the nucleonic 
states may be characterized by the quantum numbers £?p, de­
noting the components of angular momentum of the individual 
nucleons along the symmetry axis. For a given set of Qp, the 
deformability coefficients are proportional to the number of 
nucleons A, and are thus much larger than estimates based on 
the surface tension, which are of order A2/3 (apart from the 
influence of electrostatic forces).

As the nucleus is deformed, however, states with different sets 
of £}p will cross and if, instead of following a state of constant 
£p, one follows the state of lowest energy for any given deform­
ation, the resultant energy dependence will on the average be 
of the surface tension type. (Illustrations of this effect are given 
in the above references).

Deviations from axial symmetry, as well as the effect of part­
icle forces, afford a mechanism for keeping the particle struc­
ture in the state of lowest energy, provided the region of crossings 
is passed sufficiently slowly. If this adiabatic condition is violated, 
exchange of energy takes place between nucleonic and collective 
motion (Hill and Wheeler, 1953). One then encounters the 
features of the coupled system characteristic of an intermediate 
coupling strength (§§ Ila.iii, Ilb.i and iii).
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In the strong coupling situation where the nucleus performs 
small oscillations around a deformed equilibrium shape (§ Ilb.ii), 
this equilibrium shape may in general be estimated on the basis 
of a surface tension type of deformability. A finer analysis of the 
deformation properties in the appropriate region may be required 
for the detailed treatment of the vibrations around equilibrium.

The surface tension type of deformability is a statistical feature 
which depends on a regular level spacing. In the neighbourhood 
of major shell closings, the discontinuity in the level distribution 
implies a special stability of the spherical form corresponding 
to a coefficient of order A for small deformations, until the 
first few crossings have occurred (cf. Gallone and Salvetti, 
1953). This results in an anomalously large phonon energy and 
very small quadrupole moments for such nuclei. For larger 
deformations, the deformability approaches the normal value with 
a resulting decrease in the phonon energy. The potential energy 
function corresponding to these features is somewhat more 
complicated than given by (II.5).



Appendix II.

Matrix Elements in the Perturbation Representation.

The matrix elements of Hint can be obtained from the matrix 
of (#, 9?) given by

<jm I \j'm' > = <./|7l|j'> <y'2m'/z|j'2j/n>, (Ap. II. 1) 

where the last factor on the right hand side is the coefficient of 
the vector addition of the angular momenta j' and 2 to give a 
total j (cf. Condon and Shortley, 1935, p. 77, Table 43).

The sub-matrix <j|7i|/ > can be expressed in terms of 
Racah coefficients and, for particle states of the same parity, is
given by

</iw> = -|/61%

i/3(2¿-l)(2./-3)
r 2J0-1)

_L 11 / 3J(2> —1)
J V (j-OO'+i) 

i/(2j — 1) (2j + 3) 
V j(j + i)

_ 11 / 3j(2j + 3)
j r (j +1) 0 + 2)
I 3 (2/+ 3) (2j + 5) 
K 20+1)0 + 2)

(Ap.II.2)

From (1) and the matrix elements of a.., which can be obtained 
from (A.38), one derives from (11.9) the expression (11.12) for 
the first order matrix elements of Hint.

To first order in Hint, the wave function (II.11) is determined 
by the coefficients
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</; 12; LW|> = k <j\h\j’> 
h co “b /Ijj'

(Ap. II.3)

where is the separation between the particle levels /' and j. 
In terms of these coefficients, the expectation value of Rz is 

given by

(Ap. II.4)

which is equivalent to (11.13) if only the diagonal term (/ = j) 
is of importance.

For a more detailed analysis of the nuclear coupling scheme, 
such as is needed for the evaluation of the magnetic moment, 
the non-diagonal matrix elements of sz given by

<j = I-t; 12; = / + |; 12; /M>

M
2/(/+1) (2/+1)

(Ap. II.5)

are also of interest.
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coupling approximation may be

-|-

(Ap. III.l)
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Features of the Strong Coupling Solution.

i. Matrix elements.
The matrix elements of the coupling term (11.26) in the strong 

obtained from

which is derived from (Ap. II. 1 and 2).
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The expectation value < jz > is given by (11.19), while for 
the evaluation of < sz > one also needs the non-diagonal element

< j = I — I, Q ; IKM \sz\j' = I + ß; IKM >

MK
1(1+1) 2 1+1

1-1/2 + I (/ + 1 /2) <5^ 1/2 ôK 1/2 }■

> (Ap.III.2)

ii. Strong coupling for a single j = 3/2 particle.
In the special case of a j — 3/2 particle coupled to the sur­

face, there exists no regular strong coupling solution since, ac­
cording to (11.21), the configurations (y = tc; ß — 3/2) and 
(y = 0; Q — 1/2) are degenerate. Indeed, the proper values of 
Hint (cf. A.80) are independent of y. In strong coupling, we may 
restrict ourselves to the lower of these proper values, and the 
wave function for the state with I — 3/2 may be written

{I 3/2 ; 3/2 3/2 A/> sin y/2 4-1 —1/2 ; 3/2 3/2 M> cos y/2 } (£, y) ]
., . x > (Ap. III.3)
(I 1/2; 3/2 1/2 Af > cosy/2 + | — 3/2 ; 3/2 l/2Af>sin y/2 } <p2 (ß,.y) J

in terms of the symmetrized basis vectors | ß; IKM > (cf. 11.15). 
The vibrational functions (p1 and ç?2 represent small oscillations 
around a definite equilibrium ß-, however, the independence of 
the coupling energy of y implies essential oscillations in y, and 
the vibrational energies characterized by ny become of the order 
of rotational energies.

In order to determine the nuclear coupling scheme, one must 
solve the vibrational equation, which can be written as a matrix 
in the space of (pY and <y2. From (11.23, 24, and 25) and (A.96 
and 121-4) one obtains for the Hamiltonian of the system
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(Ap. III.4)

where Ho (/?) represents small vibrations in ß around the equili­
brium value (11.22). For sufficiently strong coupling, the vibrations 
in ß and y are approximately independent.

From (4) it is seen that there is a preference for the shapes 
y = 0 and y = n, and that there is a symmetry with respect to 
these two positions. An estimate of the y-oscillations may be ob- 
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tained by expanding H around y — 0 and n, and by taking into 
account that for y — 0 the value of is rather small compared 
to 9?2> while the opposite holds for y = ?t. Neglecting the overlap 
of the vibrations centered on y = 0 and y — n, one obtains 
two degenerate solutions, which have the same nuclear moments.

From the wave function (3), one can determine the coupling 
scheme and the quadrupole moment by means of the operators

(Ap. III.5)

and

(Ap. 111.6)

where Qo is the intrinsic quadrupole moment given by (cf. V.7)

Qo =Qo (Ap. III.7)

From the approximate wave function, one obtains

(Ap. III.8)<Å> - 0.8

leading to (cf. IV.5)

(Ap. III.9)

The quadrupole moment is found to be

<Q> ~0.16 Qo. (Ap. III.10)

Thus, the y-oscillations somewhat reduce the values o f < Á > 
and < Q > as compared with the state P = 3/2, y = n.

The energy spectrum of the system is rather complex, since 
low-lying states can be obtained by excitations of the y-vibrations 
without change of I, as well as by rotational excitations. A com­
parison between the equations for states with different I shows, 
however, that the ground state is an 1 = 3/2 state of the type 
considered above.



Appendix IV.

Solution of the Coupled Equations for Large j.

In the case of large j, a solution of the coupled system can 
be obtained for arbitrary strength of the coupling by starting from 
the corresponding classical equations and considering the quantum 
effects in first order.

If we assume the magnitude of the particle angular momentum 
to be a constant of the motion, there exists a simple classical 

solution for which j remains constant in a direction which may 
be chosen as the z-axis. The surface acquires a static deformation 
of the «o type given by

= <ApIvl)
The quantum effects give rise to an indeterminacy in the di- 

rection of j and of the axis of deformation. For j » 1, the angle 
between j and the z-axis is relatively small for the states M — I j. 
To first order, we may then treat jz as a constant, equal to j 
aside from corrections of order unity, and consider only the 
motion of the perpendicular components

J±=Jz±U{/. (Ap. IV.2)

The small inclination of the axis of deformation, with re­
spect to the z-axis, to first order implies excitations of the aj and 

surface modes. In this approximation, the a0 and a ±2 modes 
are not affected and perform independent zero-point oscillations 
around their equilibrium values a0 and 0, respectively.

The nuclear coupling scheme is thus determined by the 
coupled oscillations of the «j and surface modes and the 
perpendicular j-components. This dynamical system possesses
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three degrees of freedom, since j+ and j_ play the role of canonical 
conjugates.

The equations of motion may be obtained from the Hamil­
tonian (II.8), where Hs is given by (II.5) and Hp may be taken 
as a constant. A convenient form of Hint for j a constant is given 
by (A.76). To leading order in j, one finds

äj + &)2«i — xco2

zÅ j_+x tflkocizx]/— ~ j. 
vj \ y c

= 0.
(Ap.IV.3)

The dimensionless coupling constant x is given by (11.14).
This system of linear equations can be solved in terms of three 

independent harmonic oscillators with proper coordinates qs. We 
thus write

2\

«i = qsel0)st
s = 1 (Ap. IV.4)

The proper frequencies are found to be

coi = 0
(Ap.IV.5)

For the uncoupled system (x — 0), the frequencies become 0, 
± co of which the first is associated with the degeneracy of the 
Jz-levels, while the two latter belong to the surface oscillators. In 
the limit of strong coupling, the degeneracy with respect to Iz 

provides the zero frequency, while the rapid precession of j 
around the nuclear axis has the frequency

co2 3 x2co, (Ap. IV.6)

and the slow rotational motion of the system takes place with the 
frequency

M
(Ap. IV.7)
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Both these limiting frequencies agree with those obtained from 
the strong coupling solution by considering energy level spacings 
associated with the quantum numbers X2 and I (cf. 11.21 and 24). 
The three remaining degrees of freedom of the system whose 
frequencies remain to this order equal to a> correspond in strong 
coupling to the level spacings of the quantum numbers riß, ny, 
and K.

The commutation relations of the qs variables may be oh- 

tained from those of the and j components. One finds

> (Ap. IV.8)

In these coordinates, the angular momentum transferred to the 
surface is given by

jry _ j
< ^ > = — — £ cos < q* qs + qsq' > 

s
(Ap. IV.9)

and for the ground state one obtains 

(Ap. IV.10)

The factor I 
/+1

which has been added equals unity to leading

order, and makes the equation, in the limit of strong coupling, 
exact for all values of I (cf. 11.20).

The transfer of angular momentum implied by (10) gives rise 
to a small static decrease in the magnitude of a0 since the latter 
is proportional to < 3 j*— j (j + 1) > (cf. A.78). From this effect 
follows the projection factor (V.ll).



Appendix V.

Individual-particle and Collective Features of 
Nuclear Reactions

The recognition of relatively undisturbed single-particle motion 
as an important aspect of the nuclear dynamics implies a picture 
of nuclear reactions, in which the incident particle interacts in 
the first stage with the average nuclear field. In subsequent 
stages, the coupling between the particle and the internal degrees 
of freedom of the target nucleus may lead to the formation of a 
compound nucleus, in which the excitation energy is shared 
among a large number of degrees of freedom (cf. § Vid).

In Section a) of this Appendix, a description of the reaction 
process is formulated, based on the assumption that the formation 
of the compound nucleus is initiated by the interaction of the 
incident particle with the surface oscillations of the target nucleus.

The formalism is applied in Section b) to the dispersion of 
neutrons, and the scattering cross-sections are considered for 
various strengths of the coupling to the compound nucleus. A 
sum rule for the scattering widths of the resonance levels is 
discussed.

The parameters of the formalism, which enter into the de­
scription of the coupling process, are considered in Section c). 
Recent empirical evidence, obtained from total neutron cross­
sections averaged over many levels, permits an estimate of the 
coupling strength which may be compared with the particle­
surface interaction observed in the low energy nuclear properties.

a) General Formalism.

In order to avoid inessential complexities of the mathematical 
formalism, we first consider the elastic scattering of an s-neutron 
on a nucleus of spin zero, and neglect the effect of inelastic pro- 

10*
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cesses. The extension to a more general treatment is indicated 
below.

The wave function may be expanded in the form

(Ap.V. 1)

where 0O is the ground state of the target nucleus, described by 
the coordinates (x) which may represent individual particles as 
well as collective degrees of freedom. The radial wave function 
of the scattered neutron is denoted by 92 (r). The constitute a 
complete orthonormal basis in the space orthogonal to 0O.

In the mixed representation (1), the state vector is specified 
by the function <p(r) and the coefficients c¿. Assuming the coupling 
between the incident particle and the internal motion of the 
target nucleus to take place at a sharp surface (r — Bo), one 
obtains the coupled differential and algebraic equations

V(r)9? = (£ —E0)<P r + ^0

I

(Ap.V. 2)

(Ap.V. 3)

(Ap.V. 4)

where (E — Eo) is the kinetic energy of the incident neutron (in 
the center of mass system) and V(r) the potential to which the 
neutron is subjected inside the nucleus. For simplicity, we take 
V(r) to be constant for r < Ro and to rise abruptly to zero at 
the surface.

The matrix elements are given by

Hoi= ^R^drdx$’0HÍM¿,x)'Pl (Ap.V.5)

and
Hif = {dr dx W'iH'Pj, (Ap.V. 6)

where HM (r, x) is the coupling between the incident particle 
and the surface (cf. II.9 and 10) and H is the total Hamiltonian 
of the system. The most convenient choice of the basis xPi de­
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pends on the structure of the coupling process hy which the 
compound nucleus is formed (cf. Ap. Vc). In some simple 
situations, one may take the to represent stationary states in 
the absence of the coupling to the entrance channel, i. e.

= EtSlf. (Ap.V. 7)

The equation (3) contains the discontinuity of the logarithmic 
derivative of <p at the surface, which may be written, by means 
of (2),

kR0 cot (kRo + d) — KRq cot KR0

f(E)-f^E),
(Ap.V. 8)

where k and K are the outside and inside neutron wave numbers, 
and Ô is the scattering phase.

The scattering cross-section is given in terms of f by (cf., 
e. g., Blatt and Weisskopf, 1952, Chapter VIII)

1 _  /+ ikR0 2ikB0
f—ikR0

(Ap. V.9)

The quantity fsp in (8) is the f-function which corresponds to 
single-particle scattering in the fixed nuclear potential.

The equations (3) and (4) determine <p(Ro) and the c¿; the 
compatibility condition provides the linear equation for f

Hi0 H^-EÔ^

The special basis (7) gives

(Ap.V. 10)

(Ap.V. 11)

The treatment of partial waves of higher angular momentum 
and the effect of Coulomb forces leads to the same equation (10) 
for the function f, which then determines the cross-section by 
formulae which are generalizations of (9).
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If inelastic processes are possible, one chooses an appropriate 
number of the to represent the open channels (/) other than 
the entrance channel. The function f is again determined by an 
equation of the form (10) where, however, for the open channels*

* If the residual nucleus possesses a spin, there may be an additional con­
stant term in (12), arising from t and representing the energy shift of the 
single-particle resonances in the channel t, resulting from the non-spherical na­
ture of the potential.

- E ~ ((Ap), - (J, + is,)]. (Ap. V. 12)

The is the single-particle /’-function appropriate to scattering 
in the channel, t, and At the level shift associated with long 
range forces. The imaginary term st is related to the channel 
width (cf. Blatt and Weisskopf, 1952, p. 332). Similarly, one 
may include radiative processes by adding a complex term to 
the nuclear Hamiltonian.

The effect of inelastic processes leads to complex values of f 
from which the elastic cross-section and the total reaction cross­
section may be determined. The distribution of reaction products 
among the open channels is determined by the values of Ç9Z(ÂO).

The formulation given above, some consequences of which 
are considered in the following, has assumed the coupling be­
tween the incident particle and the internal structure of the 
target nucleus to be located at a sharp surface. The influence of 
a finite surface thickness as well as of other types of coupling, 
such as to collective volume oscillations and to particle excitations 
through direct particle forces, can be treated in a similar way 
by obtaining from the coupled equations a linear expression for 
f. The form of this expression may, however, in these cases be 
somewhat more complicated than (10).

b) Scattering Cross-sections.

In order to illustrate some of the characteristic features of 
nuclear reaction cross-sections, which are contained in the 
formalism outlined in Ap.Va, we consider in this paragraph 
the dispersion of neutrons in the region of sharp resonances 
(kR0 « 1), and restrict ourselves to s-wave scattering.
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i. Weak coupling; one-level resonance.
The coupling between the entrance channel and the com­

pound nucleus may be termed weak if the second term in (11) 
is small compared to the first, except in the immediate neighbour­
hood of the energies Eit i. e. for

(Ap.V. 14)

where D is the level distance in the spectrum of Et.
When the condition (14) is fulfilled, the impinging particle 

interacts mainly with the average potential of the target nucleus 
for most incident energies. This potential scattering depends 
on the distance from the nearest single-particle level and may 
take on all values from 0 to 4?rÂ2. If K Ro » 1, the potential scat­
tering for most energies is close to that of an impenetrable sphere 
(f = oc), but characteristic differences from this limit are ex­
pected, and experimental evidence on cross-sections far away 
from resonances may give information on the motion in the 
average potential*.

In the immediate neighbourhood of an energy Eif the cross­
section varies rapidly. If the potential scattering is small com­
pared to 4?rA2 (fsp » kR; cf. (9)), one obtains a resonance of 
the usual type

n r2 
a — k2 1 ’

(E-Er)2+^r2

where the resonance energy Er is given by 

leading to
f(Er) = 0,

(Ap.V. 15)

(Ap.V. 16)

(Ap.V. 17)

which, in view of (14), is much closer to Et than the neighbouring 
levels. The scattering width r and the reduced width y are given by

* The term "potential scattering” is sometimes used to denote the scattering 
from an impenetrable sphere (cf., e. g., Blatt and Weisskopf, 1952). The recog­
nition of the significance of single-particle nuclear motion for the course of nuclear 
reactions would seem, however, to make it more natural to reserve the term for 
the scattering in the actual nuclear potential. We here follow this latter terminology.
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F = 2 Á’fíoy = — (Ap.V. 18)f(Er) V 1 7

which, according to (11) and (17), gives

MR* |H0i|2
r = 2 Á7?0 0 (Ap.V. 19)

Áp

This value for the width is small compared to D by (14) and 
the assumption fsv> » À'/?o.

The potential scattering becomes comparable with the re­
sonance maximum in the neighbourhood of the resonance 
energies En for single-particle scattering, given by

/,„(£„) = 0. (Ap.V. 20)

The energy regions in which <rpot ~ 4 %Z2 are given by

|E-En|< rsp, (Ap.V. 21)
where

rsp = 2 kRay,v = 2 kR„ (Ap.V. 22)

represents the single-particle scattering width. In the regions (21), 
the form of the compound resonances is essentially modified by 
the potential scattering and, for \ E— En | « Vsp, the influence of 
the compound state appears as a narrow dip in the cross-section.

A simple interpretation of (14) may be obtained by using the
approximation

<A?v-24>
valid for \E— En | (( zl, where J is the single-particle level 
distance (cf. (VI.7)). By means of (24) the condition (14) may
be written

i—LËIlL— (( J (Ap.V. 25)
\E-En\ D r

which is just the condition that the coupling Hoi to the entrance 
channel does not appreciably modify the compound states. 
Therefore, the states Yh act individually and influence the scat­
tering only in small energy intervals around the Ervalues.
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In the region | E — En | < I\p, the condition for weak coupling 
is modified, corresponding to the fact that the single-particle 
levels are only defined to within an energy r The analysis of 
(11) shows that in this region the less stringent condition

(Ap.V.26) 

is sufficient to ensure that the states act individually. The 
fact that (26) implies a scattering which, to first approximation, 
is of potential character, may be understood by observing that 
2 ^(/iD)”1 I Hoi |2 represents the probability per unit time for 
coupling of the incident particle to the compound states. If this 
probability is small compared to /î-1Psp, which is the probability 
per unit time for escape from the single-particle state, the coup­
ling is of only minor importance.

For I E — En I ~ Zl, several single-particle levels are simul­
taneously effective, and the condition (14) can be interpreted in 
the same way as (25) by considering the total perturbation caused 
by all the single-particle levels.

ii. Strong coupling; many-level resonances.
When the conditions (14) or (26) are not fulfilled, the coupling 

between the states and the entrance channel leads to quasi- 
stationary states of the compound nucleus, essentially different 
from the The coupling strongly mixes the states V7, over an 
energy region given by the left hand side of (14).

Some of the properties of the scattering in the strong coupling 
region can be illustrated by assuming that, over the region of 
strong mixing, the can be approximated by a spectrum of 
uniform spacing I) with a constant coupling matrix element 
I Hoi J — Hc. In this case, (11) can be written

/ = Zip + cot- E(). (Ap.V. 27)

It is seen that the resonances Er of the compound nucleus 
(f(Er) = 0), which are close to Et for weak coupling, move half­
way in between the energies Et when the coefficient of the con- 
tangent in (27) becomes large compared to /sp.
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The resonance scattering widths can be obtained from (18) 
and are found to be

2 k D
K 71 DA

-i

(Ap.V. 28)

which is a generalization of (19), to which (28) reduces when 
the last term in the parenthesis dominates (weak coupling).

In the strong coupling region, the behaviour of the cross­
section in between resonances is determined by the contribution 
of many far-olT compound states, which dominates over the 
potential scattering. The variation of this background scattering 
depends on the coefficient of the cotangent in (27). Only when 
this coefficient is large compared to unity does the cross-section 
away from resonance approach a constant value, which then 
equals that of hard sphere scattering.

The foregoing analysis leads to the following picture of the 
scattering process in the various coupling regions (cf. Fig. 16).

For very small coupling

(Ap.V. 29)

the weak coupling situation applies for all incident energies 
and the principal part of the cross-section is determined by the 
potential scattering.

When (29) no longer holds, a strong coupling situation exists 
in the neighbourhood of the single-particle levels. Inside the 
region of strong coupling, the reduced scattering widths are of 
order (cf. (28))

V =
' d y n2

MR* (Ap.V. 30)

while, at larger distances from the single-particle level, where 
the coupling is weak, the widths become very much smaller. A 
measure of the extent of the strong coupling region can be ob­
tained as the energy interval W over which the reduced widths 
exceed half the maximum value (30). From (28) one finds

(Ap.V. 31)
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Fig. 16. Scattering f-function in coupled model. The scattering cross-sections can 
be simply expressed in terms of the logarithmic derivative f of the wave function 
at the nuclear surface (cf., e. g., (9)). The broken curve gives the /-function for 
pure single-particle scattering in the average nuclear potential. At the energies 
En, corresponding to the virtual single-particle states, with the spacing d, / 
vanishes, while half way between these energies / has poles. The coupling to 
the internal motion of the target nucleus, which is assumed to take place at the 
nuclear surface, adds a rapidly varying part to the total /-function (cf. (11)). 
The compound nucleus is described in terms of the states which would represent 
stationary states in the absence of the coupling to the entrance channel. At the 
energies £., which have on the average a spacing D, the /-function has a pole, 
while a resonance energy E of the compound nucleus (for which / = 0) occurs 
in each interval E¡ < E < E^ + 1.

The relative magnitude of the two contributions to / depends on the distance 
from the nearest single-particle level En. At large distances from E , the value 
of / dominates and, to a first approximation, the cross-section is that of potential 
scattering. The coupling gives rise to resonances lying very close to the Ei and 
the scattering widths, which depend inversely on the energy derivative of / at 
resonance, are small (weak coupling region). Near to the 2?n-values, the /-function 
is determined principally by the coupling term (strong coupling region). In this 
region, which extends over an energy interval W (cf. (31)), the resonance states 
result from the coupling of many ’/^.-states, and the resonance energies lie essent­
ially midway between the E-. The scattering widths are relatively large in the 
strong coupling region, being of the order of d/W times the average resonance scat­
tering width (cf. the sum rule (33 a)) ; the oil-resonance scattering results mainly 
from the influence of many far-off resonances.
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This energy is related to the probability per unit time for the 
formation of the compound nucleus, and can also be written in 
the form (VI.6), in terms of the mean free path of the particle 
for energy exchanges in the target necleus.

For a coupling strength so great that W becomes comparable 
with or exceeds Zl, the region of strong coupling extends over the 
entire energy interval, and no structure associated with single­
particle motion remains. In this situation, the entering particle 
shares its energy with many degrees of freedom of the compound 
nucleus before completing a single traversal of the nuclear field.

iii. Sum rule for scattering widths.
As long as the region of strong coupling W is small compared 

with the single-particle level spacing Zl, there exists a simple 
sum rule for the reduced scattering widths. This may be obtained, 
in its most general form, directly from (10). Since the scattering 
widths are appreciable only in regions around the single-particle 
levels En, one may use the form (24) for fs . The equation (10) 
is then equivalent to the secular equation for a bound state 
problem. The proper values and proper function for f — 0 give 
the resonance energies Er of the compound nucleus and the state 
vectors of the scattering system at these resonances.

The reduced widths depend on f (Er) and can be expressed 
in terms of the minors of (10) which, in turn, are simply related 
to the state vector at resonance. Thus, one obtains

Yr = (Ap.V. 32)

which expresses yr in terms of the reduced width of the single­
particle level times the probability of finding the single-particle 
motion in the compound state (r). From the completeness of the 
states (r) one gets immediately 

r

h2

7sP.

(Ap.V. 33)

(Ap.V. 33 a)
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where the sum is to be extended over the scattering resonances 
in the region —d/2 <E — En < A/2.*

As IV approaches A, the single-particle level strength becomes 
approximately uniformly distributed over all the compound 
levels, corresponding to the relation (cf., e. g., Weisskopf, 1950)

D r _ 2kD
A sp ~ K n' (Ap.V. 34)

It may be noted that the sum rule (33 a) is independent of 
the shape of the nuclear potential and of the particle angular 
momentum as well as of the types of couplings considered.

Similar sum rules hold for other properties of the compound 
levels, which depend on the content of a particular single-particle 
state. Thus, for a radiative transition to the ground state, the 
single-particle width may be considered as distributed over the 
compound levels, whose average radiative width, for the cor­
responding transition, may be represented by an expression 
equivalent to the first part of (34)**. However, for W<A, the 
distribution will not be uniform, and the single-particle radiative 
width will be mainly concentrated on the compound levels in an 
energy region W around the unperturbed single-particle state.

c. Discussion.

In the application of the general formalism outlined in the 
preceding sections, the significant features of the nuclear struc­
ture are contained in the states Y7- in terms of which the proper­
ties of the compound nucleus are characterized.

The choice of a basis which diagonalizes all couplings except 
those to the entrance channel (cf. 7) is particularly appropriate

* Sum rules for reduced widths have been considered by Teichmann and 
Wigner (1952) who have especially discussed the sums over channels leading 
from a particular compound state. Arguments for a relation similar to (33) are 
containéd in the discussion following Eq. (31 b) of this reference. The factor 3/2 
appearing in the estimate obtained by these authors arises from the assumption 
of a constant neutron wave function inside the nucleus.

** An expression for the partial radiative width of a compound state, si­
milar to the first part of (34), has been given by Blatt and Weisskopf (1952; 
p. 646). However, as an estimate of the single-particle level spacing which en­
ters in this expression, these authors have suggested a value of about 0.5 MeV 
for a medium heavy nucleus. The present estimate for A (~ 20 MeV) thus leads 
to a considerable decrease in the radiative widths. 
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if one can assume that, already after the first energy exchange 
between the incident particle and the target nucleus has taken 
place, the subsequent couplings proceed so rapidly that no 
structure associated with individual configurations remains.

In this situation, the states Y7,-, though highly complex, have 
a certain uniformity of statistical nature. As a first approximation, 
one may assume the | Hoi | to have a constant value Hc, and 
the level energies E) to be approximately evenly spaced with a 
separation D. The gross features of the nuclear level structure 
may then be characterized by the coupling parameter W, re­
presenting the energy region around the single-particle resonances, 
where the compound nucleus is formed with appreciable prob­
ability (cf. Ap.Vb.ii and also § Vid).

In general, one expects simple types of motion to manifest 
themselves also in intermediate stages of the reaction. The choice 
of the basis (7) is then less appropriate, since the assumption of 
a constant Hoi is no longer valid. The resulting features of the 
reaction process may be taken into account by including among 
the VT a number of states representing the structure of the inter­
mediate stages.

Such effects may, for instance, be significant for very deformed 
target nuclei, where the entering particle has a large probability 
of setting the nucleus in rotation (cf. § VIc.ii). The rotational 
excitation energy is not easily transmitted to the other degrees 
of freedom of the nucleus, and may with appreciable probability 
be returned to the entrance channel, or may give rise to an in­
elastic process without the formation of a compound nucleus. 
To describe these features, one may consider as a first approx­
imation only the potential scattering and the specific couplings 
to the rotational motion. It may be possible to include the ad­
ditional couplings leading to the compound nucleus formation, 
by means of a uniform set of states, whose coupling to the simple 
motion may be characterized by parameters similar to W.

Recently, important evidence on the formation of the com­
pound nucleus has been obtained from the analysis of total 
neutron cross-sections, averaged over many resonances (Bar- 
schall, 1952; Feshbach, Porter, and Weisskopf, 1953). The 
effect of the compound nucleus formation on such average cross­
sections can be described as an absorption, since one may con-
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sider the problem in terms of the scattering of neutron wave­
packets with a time extension short compared with the periods 
of the compound states. A particle entering the complex motion 
is, therefore, effectively lost from the wave-packet. Such an ab­
sorption can be represented by an imaginary potential (cf., e. g., 
Bethe, 1940).

In the simplified situation discussed above, where specific 
structures of the intermediate stages of the coupling process can 
be neglected, the averaged total cross-sections can thus be ob­
tained by considering single-particle scattering in a constant 
complex potential. The coupling energy W is related to the 
imaginary part of the potential V by

W = — 2Im(V'). (Ap.V. 35)

The analysis of the empirical data has shown that many 
features of the averaged total cross-sections can be accounted 
for in terms of such a complex potential with Im(V) — 1 MeV, 
corresponding to W 2 MeV (Fesiibach, Porter, and Weiss- 
kopf, 1953). Thus, the observed cross-sections resemble those of 
single-particle scattering, in which the individual resonances are 
broadened by about two MeV.*

The coupling which leads to the compound nucleus formation 
may result from the interaction of the incident particle with the 
surface oscillations or other collective modes of the target nucleus, 
or from direct collisions with individual nucleons. The contribu­
tion of the surface coupling to IV may be estimated from the 
matrix elements in Chapter II. For the average coupling matrix 
element Hc, one has

"e “ (Ap.V. 36)

where the sum is extended over all states within the single-particle 
level spacing zl. This sum represents a closure over all variables

* In fitting the experimental cross-sections, Feshbach, Porter, and Weiss- 
kopf (1953) have used the parameters Vo = 19 MeV, for the real part of the 
potential, and 7ÎO = 1.45 X A1/3 X IO-13 cm for the nuclear radius. While the 
agreement between the calculated and measured cross-sections is striking, these 
parameters do not seem compatible with the positions of the single-particle levels, 
assumed by the shell model, which for the above radius requires a potential of 
about 30 MeV. Thus, for example, the observed large cross-sections below 1 MeV 
for elements with A 90 result, for Vo = 19 MeV, from a virtual 2p level, while 
already for lighter nuclei, 2p states, bound by about 8 MeV, have been iden­
tified (cf., e. g., Tables XII and XXV).
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except the radial quantum number of the particle, and one ob­
tains (cf. (II.9) and (A.38))

V|//(Ji|2= < 0 I/7j2nt ] 0 > = (Ap.V.37)
i ö n L

for a particle incident on an undeformed nucleus. From (31), 
(36), and (37) one then finds

5 k2 hoj
4/T C ‘ (Ap.V. 38)

The hydrodynamical surface parameters (Figs. 1 and 2) and the 
expression (VI.7) for d lead to values for W of about 2 and 3 
MeV for a heavy and medium heavy nucleus, respectively. It 
thus appears that the surface coupling is adequate to account 
for the observed probabilities for compound nucleus formation.

In the case of strongly deformed target nuclei, one obtains

< 0 I Hfnt I 0 > = A k2ß*
1 4% (Ap.V. 39)

which represents an increase over (37) by a factor of the order 
of the number of phonons present in the deformed state. How­
ever, the major part of this very strong coupling leads to rotational 
excitations and thus gives rise to features in the reaction process 
that cannot be represented by the scattering in a fixed complex 
potential (see above). A detailed study of elastic as well as in­
elastic neutron cross-sections for very deformed nuclei (espec­
ially in the regions 155 < A < 185 and A > 225) would thus be 
of interest. In addition to rotational interactions, the surface 
coupling gives rise to the excitation of vibrational modes, which 
may rather rapidly transmit their energy to additional degrees 
of freedom and result in the formation of a compound nucleus. 
An estimate of these couplings can be obtained from (39) by 
subtracting the rotational interactions, and one finds a value for 
the absorption parameter VV of about 3/5 of the estimate (38).

With increasing energy of the impinging particle, couplings 
to collective modes of higher frequencies are expected to be of 
increasing importance, and also the direct particle forces can 
excite an increasing number of degrees of freedom of the target 
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nucleus. A compensating effect sets in when the particle energy 
becomes comparable with the kinetic energies of the target 
nucleons. The short time spent by the particle in the nucleus, 
together with the decreasing nucleon scattering cross-sections, then 
implies a decrease in the probability for formation of the compound 
nucleus. For bombarding energies in the region of 100 MeV, an 
appreciable transparency of the nucleus has been observed and 
has been interpreted in terms of the single-particle features em­
bodied in the optical model of the nucleus (Serber, 1947; Fern- 
bach, Serber, and Taylor, 1949).

Dan.Mat.Fys.Medd. 27, no. 16. 11



Appendix VI.

Nuclear Excitation by the Electric Field of 
Impinging Particles.

Important information may be obtained from the excitation 
of nuclei by bombardment with heavy charged particles whose 
energies are sufficiently below the Coulomb barrier to exclude 
the influence of nuclear forces. Since only electrostatic forces 
are then operative, the experiments can be analyzed in terms of 
relatively simple properties of the nuclear structure. Recently, 
Ter-Martirosyan (1952) has given a rather detailed treatment 
of such processes*. We here summarize some of the results of 
this analysis, attempting in particular to indicate the relations 
to the electromagnetic radiative transitions (cf. Chapter VII).

A great simplicity in the analysis arises from the fact that 
one can describe the projectile as following a classical trajectory. 
The condition for such a classical treatment is (cf. N. Bohr, 
1948, § 1.3).

(Ap.VI.l) 
fw

where Z1 and Z2 are the charge numbers of the projectile and 
the target nucleus, respectively, and where v is the velocity of 
the incident particle.

This condition is always fulfdled when the bombarding energy 
is sufficiently low that penetration through the Coulomb barrier, 
and thus the influence of nuclear forces, is negligible.

One can then describe the influence of the particle on the 
nucleus in terms of a time-dependent potential

♦ Various aspects of these reactions have also been previously considered 
(Weisskopf, 1938; Ramsey, 1951; Mullin and Guth, 1951; Huby and Newns, 
1951; Breit, Hull, and Gluckstern, 1952).
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(Ap.VI. 2)

where rp are the coordinates of the target protons and where 
7(0 gives the trajectory of the incident particle, considered as 
a point charge. This potential gives rise to nuclear transitions 
of electric multipole character. Of special interest are the collec­
tive transitions, for which the excitation cross-sections are parti­
cularly large. The low energy collective transitions are induced 
by the quadrupole component of (2), given by

V2(i) = 'p Y2p fp) [r(0]-s. (Ap.VI. 3)
0 /I p

The method of Coulomb excitation may also find application to 
other multipole transitions*, but these are in general expected to 
have appreciably smaller cross-sections. Magnetic transitions are 
weak due to the small velocity of the projectile.

Since the field of the particle produces only a small per­
turbation in the internal nuclear wave function, the probability 
for excitation of a given level may be written

P= 2'|&(Ai/)|2. (Ap.VI. 4)
Mf

where Mf is the magnetic quantum number of the final state and 

b(Mf) = 1- (<f| V(0| i> eia)tdt (Ap.VI. 5)
i n J—oo 

with
hco = Ef —Et = AE. (Ap.VI.6)

For a quadrupole transition, one obtains
p + 00

K'/;> = T 7/F A < ' I™e(2’ If> <ap-vi- 7>
V — 00

in terms of the nuclear matrix elements of the quadrupole ope­
rator (2, /z) given by (VII.5).

* The electric dipole transitions have been considered in detail, for all values 
of x, by Mullin and Guth (1951), Huby and Newns (1951), and Ter-Martiro- 
syan (1952). Mullin and Guth (1951) have also considered the quantum mechan­
ical treatment of E2 transitions, but their cross-sections seem to be too small, as 
a result of the assumption of a scalar property of the quantity M2Bom (^, V) 
implied in the equation following (29) of their paper.

11*
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The classical orbit of the projectile is a hyperbola and it is 
convenient to choose a coordinate system whose xy plane is 
that of the orbit and whose .r-axis is the focal line. The orbit 
may be given in the following parametric representation

where

X = a (cosh co + e) 
y = a I e2 —- 1 sinh iv 
r = a (e cosh tv T 1)

t = - (e sinh iv + u?),

a -Zi Z2 e2
mu2

(Ap.VI. 8)

(Ap.VI.9)

is half the distance of closest approach in a head-on collision. 
The reduced mass is denoted by m. The orbital eccentricity e is

(Ap.VI. 10)

in terms of the impact parameter p. The angle of deflection & 
in the center of mass system is given by

& atan - = —. (Ap.VI. 11)
- P

The transition amplitude can now be written

) = i|/y Z^- (Ap.VI. 12)

where Be(2) is given by (VII. 2). The non-vanishing components 
of y? are given by

+ co
gi £(e sinh iv H- iv)

- 00

1
(e cosh iv + l)2 div (Ap.VI. 13)

I / ? sinh W + w) (coshw+eTf/fi2—1 sinh w)2 ,
J 2J_00 (e cosh iv + 1 )4

where
d L Zl Z2 e2
2 E hv (Ap.VI. 15)
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The quantity e£ represents the ratio of the collision time to the 
nuclear period r = co-1. For values of e^ of the order of or larger 
than unity, the collision becomes approximately adiabatic with 
a resulting small excitation probability, decreasing exponentially 
with e£.

The differential cross-section for excitation associated with 
a scattering into the solid angle dß is

<toexc(£) = I a2 sin-4^ PdQ, (Ap.VI. 16) 

while the total cross-section for excitation of the state in quest­
ion becomes

= IT zp(Jv)2'B'(2)9!a)’ (ApVI'17) 

with
</2(0 = ”d£|s<?|2. (Ap.VI. 18)

n 1

The function p2(£) is plotted in Fig. 17.
From the relative values of the transition amplitudes b (Mf) 

the angular distribution of the y-radiation following the excitation 
can be determined*.

* Recently, explicit expressions for the angular distribution of the y-radia- 
tion following Coulomb excitation have been given by Alder and Winther (1953).

While the angular distribution may give information about 
the spins of the states involved and about the multipole order 
of the emitted y-rays, the measurement of crexc for the excitation 
from level c to level d leads to a determination of the quantity 
{Se(2)}c^<,. This information is thus similar to that obtained 
from a lifetime measurement for the inverse transition, for which 
the E2 radiative probability is given by (cf. (VII. 1))

T = ~ | (Ap.VI. 19)

The nuclear matrix elements for the excitation and decay are 
related by

2Zd + 1
• (Ap.VI. 20)
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Fig. 17. Function g2(^) appearing in cross-sections for Coulomb excitation. The cross­
section for Coulomb excitation produced by the electric quadrupole field of the im­
pinging particles is given by (17), which contains the function g2(^), where £, 
given by (15), is a measure of the ratio between the collision time and the nuclear 
period. The function g2 (¡¡) is expressed by means of (13), (14), and (18) in terms 
of integrals over the trajectories of the particles. The integrals have been numer­
ically evaluated by Alder and Winther (1953), whose results we reproduce in 

this figure.

The evaluation of the reduced transition probabilities B for 
various types of transitions in the coupled system has been given 
in Chapter VII.

The large values of Be(2) for nuclear collective transitions 
make the method of Coulomb excitation especially suited for 
the study of rotational and vibrational states (§ VI c).

Note added in proof: Recently, the feasibility of Coulomb excitation has 
been exhibited by the observation of the y-radiation following the nuclear ex­
citation (McClelland and Goodman, 1953; Huus and Zupancic, 1953). By this 
method important evidence has been obtained on the rotational spectrum of the 
odd-A nucleus, 73Ta181 (cf. IIuus and Zupancic (1953), whose results we here 
summarize).

The first strongly excited level has been found at 137 keV. Since the ground 
state of Ta181 has Io — 7/2, the first rotational state is expected to have 1 — 9/2 
and an energy of 9/j2/2 3 (cf- VI. 4). Thus, assuming a similar moment of inertia 
as in the neighbouring even-even nucleus 72Hf180, whose first excited (2+) state 
has an energy of 93 keV (cf. Scharff-Goldhaber, 1953), the first rotational 
state in Ta181 should have an energy of about 140 keV, in good agreement with 
the observed value.

The second rotational state in Ta181, with I = 11/2, should have an energy
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of 20/9 times that of the first (9/2) state, and should also be strongly excited. 
This was confirmed by the observation of a y-ray of 300 keV resulting from the 
Coulomb excitation.

The energy dependence of the excitation cross-sections for the two states 
was found to be in good agreement with (Ap. VI. 17), using the numerical results 
for g2 (s) of Alder and Winther (1953), thus supporting the £2 interpretation 
of the excitation process.

From the magnitude of the observed cross-section for the excitation of the 
137 keV line, the reduced transition probability Be (2) can be obtained from 
(Ap. VI. 17). By means of (VII. 18) and (Ap. VI. 20), one derives an intrinsic 
quadrupole moment of | Qo | ~ 7xl0"24 cm2, which is in good agreement with the 
trend of the deformations deduced from lifetime measurements of first excited 
states in even-even nuclei (cf. Table XXVII). The value of Qo may also be 
compared with the spectroscopic quadrupole moment (cf. Table XVIII) which 
yields, by means of the projection factor (V. 9), a deformation of Qo~ 14 x 10~24 cm2, 
which is again of the same order of magnitude; the difference may not be signi­
ficant in view of the experimental uncertainties.

The cross-section for the production of the 300 keV y-ray depends also 
on the branching ratio between the direct ground state transition (11/2 -> 7/2) 
and the cascading (11/2 -> 9/2 7/2) via the first excited. state. From a com­
parison of the cross-sections for the 300 keV and 137 keV y-rays, a branching 
ratio of about 1:4 has been deduced. While the cross-over transition is of pure 
E 2 type, the cascade may proceed by M 1 as well as by E 2 transitions. The 
E 2 transition probabilities can be determined from the value of Qo (VII. 18 
and 19), and the Ml transition probability can be related to the magnetic 
moment of the ground state (VII. 20 and IV. 9). From the observed magnetic 
moment (Table XVIII) and the value Qo = 1 x 10"2,1 cm2, and using the internal 
conversion coefficients of Rose et al. (1951) and of Goldhaber and Sunyar 
(1951), one calculates a branching ratio of about 1:1. While the observed branching 
ratio confirms the relatively strong competition of E 2 with M1 radiation in 
rotational transitions, it is still somewhat smaller than the calculated ratio; 
however, the theoretical estimate is very sensitive to the value of the ground 
state magnetic moment, and a precision determination of fi (Ta181) would thus 
be of interest.
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Preface to the Second Edition

he general approach to the analysis of nuclear structure which
JL was followed in this paper has been considerably developed 
during the past four years and has been applied in the interpre­
tation of a large body of experimental data. The 1953 paper is 
being reproduced without changes, but we take the present oppor­
tunity to indicate some of the main lines along which the develop­
ment has proceeded and to give a number of references to later work.

The description of nuclear dynamics in terms of individual 
particle motion and collective oscillations is based on a set of 
equations representing the coupled motion of the particle and col­
lective degrees of freedom. The form of these equations follows 
largely from considerations of the symmetry properties of the 
system, and is thus expected to have a rather general validity. 
Some of the parameters involved, however, such as the stability 
of the nuclear shape against distortion or the mass associated with 
the collective flow, depend on more specific features of the nuclear 
collective motion.

As a first orientation, one attempted to employ values for these 
parameters obtained from a liquid drop model, but already the 
early analysis of various nuclear properties showed the limitations 
of this comparison. The inadequacy of the liquid drop estimates 
was especially clearly brought out by the comparison of the 
nuclear moments of inertia with the deformations deduced from 
the rate of the electric quadrupole rotational transitions (§ Vic. ii; 
Ford, 1954; Sunyar, 1955).

An improved understanding of the collective nuclear proper­
ties has come from the efforts to derive these directly from the 
motion of the nucleons; this analysis has revealed the important 
influence of the nuclear shell structure on the collective motion. 
The effect on the moment of inertia is at present the best under­
stood (Inglis, 1954; Bohr and Mottelson, 1955; Moszkowski,

1* 
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1956), but also tentative beginnings have been made with respect 
to the analysis of other collective parameters (cf. Ap. I; Inglis, 
1955; Moszkowski, 1956; Araújo, 1956; Alder ct al., 1956). The 
inadequacy of the liquid drop model with irrotational flow implies 
that the collective coordinates considered as functions of the nu­
cleonic variables are of more general form than (II.2), and depend 
on the nucleonic velocities as well as positions (Bohr and Mottel- 
son, 1955). The problem of deriving the collective nuclear properties 
from the equations for a system of interacting particles has been 
considered by a number of different methods; in addition to the 
references quoted in Alder et al. (1956, p. 528), the following 
papers on the subject have recently appeared: Coester (1956), 
Davidov and Fillipov (1956), Lipkin, deShalit, and Talmi 
(1956), Lüders (1956), Nataf (1957), Skyrme (1957), Tomonaga 
(1956), Peierls and Yoccoz (1957), Yoccoz (1957); cf. also the 
review article by Tamura (1957).

In 1953, it was not always clear which coupling scheme would 
be most appropriate to a particular nucleus. As a result of the 
extensive experimental study of nuclear rotational and vibrational 
spectra, it seems now established that the strong coupling scheme, 
characterized by a relatively large equilibrium deformation and 
a rotational band structure of the energy levels, provides a good 
starting point for nuclei in the regions A~ 25, 150 < A < 190, 
and A > 222 (cf. the data summarized in Alder et al., 1956). 
Outside these regions, and excluding the nuclei immediately ad­
jacent to closed shells, it has been possible to interpret many fea­
tures of the observed lowest states of even-even nuclei in terms 
of quadrupole vibrations about a spherical equilibrium (Scharff- 
Goldhaber and Weneser, 1955; Jean andWiLETS, 1955; Alder 
ct al., 1956). In these latter regions, the odd-A nuclei present a 
more complicated picture, which is not yet well understood, but 
which may possibly be related to intermediate coupling schemes 
(§IIb. iii; Ford, 1953; Choudhury, 1954; J. Raz, 1955).

In the region where the strong coupling scheme applies, the 
great simplicity of the nuclear structure has made possible a rather 
detailed description of the low energy excitation spectrum as well 
as of the different types of transitions between the nuclear states. 
The simple relationships between the states within a rotational 
band have been further exploited (Alaga, Alder, Bohr, and 
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Mottelson, 1955; Bonn, Fröman, and Mottelson, 1955; Satch- 
ler, 1955; Kerman, 1955) and, in addition, the analysis of in­
dependent particle motion in non-spherical fields has made pos­
sible the interpretation of intrinsic excitations and the calculation 
of equilibrium shapes (Nilsson, 1955; Moszkowski, 1955; Mot­
telson and Nilsson, 1955, 1957; Gottfried, 1956). In the 
a-decay of the heavy elements, the influence of the nuclear shape 
on the intensities of the fine structure components has been ana­
lyzed (Rasmussen and Segall, 1956; Strutinsky, 1956; Fröman, 
1957). In the ß- or /-transitions between different intrinsic states, 
there are important selection rules associated with quantum num­
bers appropriate to the motion in a deformed field (Alaga et al., 
1955; Alaga, 1955; Mottelson and Nilsson, 1957). More de­
tailed estimates have shown that the readjustment of the collective 
field (cf. p. 107) has in most cases only a small effect on the 
transition rate (Suekane, 1953; Redlich and Wigner, 1954).

While a great amount of evidence has been accumulated on 
the rotational and single particle excitation spectra of the deformed 
nuclei, relatively little information has been obtained regarding 
collective vibrations in these nuclei. Quite recently, however, there 
has appeared some evidence for the occurrence of levels with the 
expected properties of ß- and /-vibrations; also odd parity states 
resembling octupole vibrations have been observed in certain 
regions of elements (cf. the data summarized by Alder et al., 
1956, and by Perlman and Rasmussen, 1957).

The important influence of the residual two body interactions 
on various features of the low energy nuclear properties has been 
emphasized by recent work. One may especially mention the 
analysis of nuclear spectra for configurations with a few particles 
outside of closed shells (cf., e. g., the review by Elliott and Lane, 
1957) and the interpretation of magnetic moments which provides 
an especially sensitive test of configuration mixing (Rlin-Stoyle 
and Perks, 1954; Arima and Horie, 1954; and the review by 
Blin-Stoyle, 1956). Moreover, the role of the pairing energy is 
reflected in the intrinsic excitation spectra of even-even nuclei 
as well as by the analysis of the kinetic and potential energy 
of the collective motion(cf., e. g., Alder et al., 1956). It is not 
yet clear to what extent these forces simply represent the direct 
interactions between the particles outside of closed shells, and to 
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what extent they are to he ascribed to the effective forces resulting 
from the polarization of the nucleus (cf. § lie. i).

A description of nuclear reaction processes, similar to that 
developed in § Vid and Ap. V, has been considered by a number 
of authors (Scott, 1954; Lane, Thomas, and Wigner, 1955; 
Friedman and Weisskopf, 1956). An instructive example which 
exhibits some of the conditions for the applicability of the optical 
model is provided by the direct coupling between the incident 
particle and the nuclear rotational motion (cf. the discussion in 
Ap. Vc). A number of consequences of an extended optical model 
which includes the effect of such direct couplings have been 
derived (cf., e. g., Brink, 1955; Hayakawa and Yoshida, 1955; 
Drozdov, 1956; Moshinsky, 1956; Margolis and Troubetzkoy, 
1957; Gribov, 1957). In the nuclear fission reaction, the strong 
coupling scheme should provide a good description of the spec­
trum of fission channels at the saddle point, and some of the 
consequences of such a model have been discussed (Bohr, 1955).

In this brief summary, it has not been possible to mention 
explicitly the many experimental studies which have guided the 
theoretical developments. For the understanding of the low energy 
nuclear structure, the decay scheme studies and the Coulomb 
excitation experiments have in recent years played an especially 
important part. The first definite results of Coulomb excitation 
experiments were reported in 1953, shortly after this article was 
sent to the printer. For a review of the developments in this field, 
cf. Heydenburg and Temmer (1956) and Alder, Bohr, Huus, 
Mottelson, and Winther (1956).

Aage. Bohr and Ben R. Mottelson.

March 1, 1957.
Institute for Theoretical Physics 

University of Copenhagen,
and

CERN, Theoretical Study Division, 
Copenhagen, Denmark.
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